Now open to the public my colorful fractal garden a product of the versatile orbit trap algorithm. Ready made at http://maxitersfractalfollies.blogspot.com fract273.gif { ; my fractal garden ; blank ; calctime 0:27:53.20 ; created Jun 24, 2010 ; Fractint Version 2004 Patchlevel 9 reset=1960 type=formula formulafile=frac_ml.frm formulaname=gallet-10-02 center-mag=+0.58981458500000010/+1.17073695700000000/112.4031/1/-5.00000\ 044121758425/5.02228108135993612e-007 params=0.25/1000/0.005/0.005/3/85 float=y maxiter=1023 inside=atan outside=summ periodicity=0 cyclerange=1/250 colors=mz0mz0lz0ky0jy0iy0hx0gx0fx0ew0dw0dv0cv0bv0au0`u0_u0Zt0Yt0Xt0Ws0Ws\ 0Vr0Ur0Tr0Sq0Rq0Qq0Pp0Op0Np0No0Mo0Ln0Kn0Jn0Im0Hm0Gm0Fl0El0Dk0Ck0Cj0Cj0Bj\ 0Bi0Bi0Bh0Ah0Ah0Ag0Ag09f09f09f09e09d08d08c08b07a07a07`07_06Z06Z06Y05X05W\ 05W05V04U04T04T03S03R03Q03Q02P02O02N01N01M01L00K0zKkzKkzKkzJkzJjzIjzIjzI\ izHizHizGhzGhzGhzFhzFgzEgzEgzEfzDfzDfzCezCezCezBdzBdzAdzAdz9cz9cz9cz8bz8\ bz7bz7az7az6az6`z5`z5`z5`z4_z4_z3_z3Zz3Zz2Zz2Yz1Yz1Yz0Xz0Xz0Wz0Vz0Uz0Tz0\ Sz0Rz0Qz0Pz0Oz0Nz0Mz0Lz0Kz0Jz0Iz0Hz0Hz0Gz0Fz0Ez0Dz0Cz0Bz0Az09z08z07z06z0\ 5z04z03z02z01z00u0zt0zr0yq0yo0xn0xl0wk0wi0vh0vf0ue0tc0tb0s`0s_0rY0rX0qV0\ qU0pS0pR0oP0nO0nM0mL0mJ0lI0lG0kF0kD0jB0iB0iB0hB0gB0gA0fA0eA0eA0dA0c90c90\ b90a90a90`80_80_80Z80Y80Y70X70W70W70V70U60U60T60S60R50R50Q50P50P50O40N40\ N40M40L40L30K30J30J30I30H20H20G20F20F20E10D10D10C10B00A } frm:Gallet-10-02 {; Modified Paul W. Carlson formula ( Petals_Mset) ;**************************************************** ; Always use floating point math and outside=summ. ; ; Parameters: ; p1 = radius of the circles ; p2 = circle offset factor ; real(p3) = number of color ranges ; imag(p3) = number of colors in each color range ; ; Note that the equation variable is w, not z. Always ; initialize z to zero. ;**************************************************** w = 0 c = pixel r = real(p1), bailout = imag(p1) r2 = r * r ro = r + r * p2 f = 1 - (2 + p2) * p2 k = r * (p2 + sqrt(f)) ;abs val of petal center (k,k) k1 = k*(1,1), k2 = conj(k1) plsqd = 2 * r2 * f ;petal length squared z = 0 num_ranges = real(p3) colors_in_range = imag(p3) range_num = 0 iter = 0: ; w = 1 / (w*w + c) ;**************************************************** ; Determine which pair of overlapping circles the ; orbit point falls in, if any. ;**************************************************** c1 = (|w - ro| < r2) c2 = (|w + flip(ro)| < r2) c3 = (|w + ro| < r2) c4 = (|w - flip(ro)| < r2) IF (c1 && c4) d = |w-k1| ELSEIF (c1 && c2) d = |w-k2| ELSEIF (c2 && c3) d = |w+k1| ELSEIF (c3 && c4) d = |w+k2| ELSE d = 0 ENDIF ; IF (d > 0) ;************************************************ ; Set z equal to the index into the colormap. ;************************************************ index = colors_in_range * d / plsqd z = index + range_num * colors_in_range + 1 ENDIF ; range_num = range_num + 1 IF (range_num == num_ranges) range_num = 0 ENDIF iter = iter + 1 z = z - iter d == 0 && |w| < bailout ;SOURCE: 98msg.frm } Roger Alexander _________________________________________________________________ MSN Dating: Find someone special. Start now. http://go.microsoft.com/?linkid=9734384
participants (1)
-
Roger Alexander