Now open to the public my colorful fractal garden a product of the versatile orbit trap algorithm.
Ready made at http://maxitersfractalfollies.blogspot.com
fract273.gif { ; my fractal garden
; blank
; calctime 0:27:53.20
; created Jun 24, 2010
; Fractint Version 2004 Patchlevel 9
reset=1960 type=formula formulafile=frac_ml.frm
formulaname=gallet-10-02
center-mag=+0.58981458500000010/+1.17073695700000000/112.4031/1/-5.00000\
044121758425/5.02228108135993612e-007
params=0.25/1000/0.005/0.005/3/85 float=y maxiter=1023 inside=atan
outside=summ periodicity=0 cyclerange=1/250
colors=mz0mz0lz0ky0jy0iy0hx0gx0fx0ew0dw0dv0cv0bv0au0`u0_u0Zt0Yt0Xt0Ws0Ws\
0Vr0Ur0Tr0Sq0Rq0Qq0Pp0Op0Np0No0Mo0Ln0Kn0Jn0Im0Hm0Gm0Fl0El0Dk0Ck0Cj0Cj0Bj\
0Bi0Bi0Bh0Ah0Ah0Ag0Ag09f09f09f09e09d08d08c08b07a07a07`07_06Z06Z06Y05X05W\
05W05V04U04T04T03S03R03Q03Q02P02O02N01N01M01L00K0zKkzKkzKkzJkzJjzIjzIjzI\
izHizHizGhzGhzGhzFhzFgzEgzEgzEfzDfzDfzCezCezCezBdzBdzAdzAdz9cz9cz9cz8bz8\
bz7bz7az7az6az6`z5`z5`z5`z4_z4_z3_z3Zz3Zz2Zz2Yz1Yz1Yz0Xz0Xz0Wz0Vz0Uz0Tz0\
Sz0Rz0Qz0Pz0Oz0Nz0Mz0Lz0Kz0Jz0Iz0Hz0Hz0Gz0Fz0Ez0Dz0Cz0Bz0Az09z08z07z06z0\
5z04z03z02z01z00u0zt0zr0yq0yo0xn0xl0wk0wi0vh0vf0ue0tc0tb0s`0s_0rY0rX0qV0\
qU0pS0pR0oP0nO0nM0mL0mJ0lI0lG0kF0kD0jB0iB0iB0hB0gB0gA0fA0eA0eA0dA0c90c90\
b90a90a90`80_80_80Z80Y80Y70X70W70W70V70U60U60T60S60R50R50Q50P50P50O40N40\
N40M40L40L30K30J30J30I30H20H20G20F20F20E10D10D10C10B00A
}
frm:Gallet-10-02 {; Modified Paul W. Carlson formula ( Petals_Mset)
;****************************************************
; Always use floating point math and outside=summ.
;
; Parameters:
; p1 = radius of the circles
; p2 = circle offset factor
; real(p3) = number of color ranges
; imag(p3) = number of colors in each color range
;
; Note that the equation variable is w, not z. Always
; initialize z to zero.
;****************************************************
w = 0
c = pixel
r = real(p1), bailout = imag(p1)
r2 = r * r
ro = r + r * p2
f = 1 - (2 + p2) * p2
k = r * (p2 + sqrt(f)) ;abs val of petal center (k,k)
k1 = k*(1,1), k2 = conj(k1)
plsqd = 2 * r2 * f ;petal length squared
z = 0
num_ranges = real(p3)
colors_in_range = imag(p3)
range_num = 0
iter = 0:
;
w = 1 / (w*w + c)
;****************************************************
; Determine which pair of overlapping circles the
; orbit point falls in, if any.
;****************************************************
c1 = (|w - ro| < r2)
c2 = (|w + flip(ro)| < r2)
c3 = (|w + ro| < r2)
c4 = (|w - flip(ro)| < r2)
IF (c1 && c4)
d = |w-k1|
ELSEIF (c1 && c2)
d = |w-k2|
ELSEIF (c2 && c3)
d = |w+k1|
ELSEIF (c3 && c4)
d = |w+k2|
ELSE
d = 0
ENDIF
;
IF (d > 0)
;************************************************
; Set z equal to the index into the colormap.
;************************************************
index = colors_in_range * d / plsqd
z = index + range_num * colors_in_range + 1
ENDIF
;
range_num = range_num + 1
IF (range_num == num_ranges)
range_num = 0
ENDIF
iter = iter + 1
z = z - iter
d == 0 && |w| < bailout
;SOURCE: 98msg.frm
}
Roger Alexander
Enter for a chance to get your town photo on Bing.ca! Submit a Photo Now!