[math-fun] Proof or idea for proof needed
Just got from unknown guy. Any ideas? -------- Пересылаемое сообщение -------- От кого: grafix@csl.pl Кому: zakseidov@yahoo.com Дата: Среда, 20 июля 2016, 0:08 +03:00 Тема: Proof or idea for prrof needed Dear Zak, Do You know how to prove that z(m,n) for integer m,n defined as z=(n (2 m + 11 n)^5)/(64 (m^2 + 261 m n - 2501 n^2)^2 (m^2 + n^2)) can't be integer with trivial exception {z=0, m=-11,n=2} or {z=0, m=11,n=-2} Best wishes Artur Jasinski, Poland ---------------------------------------------------------------------- ----------------------------------------------------------------------
Untrue: multiples (m, n) = (11k, -2k) also yield z = 0 for integer k . Maybe he wanted solutions with nonzero z ? My first stop would be Borevich & Shafarevich "Number Theory" (in English or Russian). WFL On 7/20/16, Zak Seidov <math-fun@mailman.xmission.com> wrote:
Just got from unknown guy. Any ideas?
-------- Пересылаемое сообщение -------- От кого: grafix@csl.pl Кому: zakseidov@yahoo.com Дата: Среда, 20 июля 2016, 0:08 +03:00 Тема: Proof or idea for prrof needed
Dear Zak, Do You know how to prove that z(m,n) for integer m,n defined as
z=(n (2 m + 11 n)^5)/(64 (m^2 + 261 m n - 2501 n^2)^2 (m^2 + n^2))
can't be integer with trivial exception {z=0, m=-11,n=2} or {z=0, m=11,n=-2}
Best wishes Artur Jasinski, Poland
----------------------------------------------------------------------
---------------------------------------------------------------------- _______________________________________________ math-fun mailing list math-fun@mailman.xmission.com https://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun
participants (2)
-
Fred Lunnon -
Zak Seidov