Re: [math-fun] What is Gibbs?
4 Jun
2019
4 Jun
'19
11:19 a.m.
Derp! http://www.tweedledum.com/rwg/gibbs.htm Tnx. —rwg On Tue, Jun 4, 2019 at 8:20 AM Simon Plouffe <simon.plouffe@gmail.com> wrote:
Hello,
Gibbs is Si(Pi), is the height of a final square wave when you sum up fourier series with sin functions, a thing that cannot be avoided. https://en.wikipedia.org/wiki/Gibbs_phenomenon
The number is 1.85193705198246617036105... equal to Si(Pi),
Best regards, Simon Plouffe
Le 2019-06-04 à 17:16, Bill Gosper a écrit :
*wayback.cecm.sfu.ca/cgi-bin/isc/lookup?number= <http://wayback.cecm.sfu.ca/cgi-bin/isc/lookup?number=>1.828106334019465&lookup_type=simple Your value of 1828106334019465 would be here.* 1828106414589225 = (0001) Zeta(1/2)^Gibbs/(Zeta(1/2)^sin(Pi/12)) —rwg
2362
Age (days ago)
2362
Last active (days ago)
0 comments
1 participants
participants (1)
-
Bill Gosper