[math-fun] The Solvable Octic x^8-x^7+29x^2+29 = 0
Really From: tpiezas@gmail.com Hello all, The octic, x^8-x^7+29x^2+29 = 0 (eq.1) (by Igor Schein) is solvable, but not as easy as merely factoring over a square root extension. Rather, this can be solvable by the 29th root of unity. My solution to (eq.1) is, [tweaked (with permission) by rwg on the basis of numerical evidence: {8 x} = {1-a-b+c+d-e-f-g, 1+a+b+c-d-e-f+g, 1-a+b-c-d+e-f-g, 1+a-b-c+d+e-f+g, 1-a-b-c-d-e+f+g, 1+a+b-c+d-e+f-g, 1+a-b+c-d+e+f-g, 1-a+b+c+d+e+f+g} ] where each {a,b,c,d,e,f,g} = Sqrt[4v_i+1] and the v_i are the 7 roots of the septic, 8903+47647v+39672v^2+7192v^3-522v^4-174v^5+v^7 = 0 (eq.2) The solution of which was given by Peter Montgomery as, v_i = 2(w^11+w^13+w^16+w^18)-2(w+w^12+w^17+w^28)-(w^2+w^5+w^24+w^27)+ (w^3+w^7+w^22+w^26)+(w^4+w^10+w^19+w^25)-(w^8+w^9+w^20+w^21) and one can set w_i = {t, t^7, t^23, t^25, t^16, t^20, t^24}, and t = exp(2Pi*I/29). P.S. Similarly, a solvable 32-deg equation in x can be solved by a 31-deg Lagrange resolvent in z in the form, x = z1^(1/2) +/- z2^(1/2) +/- ... +/- z31^(1/2) though, unfortunately, no explicit examples are yet known. - Tito Piezas III http://sites.google.com/site/tpiezas/ (Check this out! --rwg) [rwg: the septic roots are all real: v->-2 (2 cos((2 π)/29)+2 cos((3 π)/29)+cos((4 π)/29)-2 cos((5 π)/29)-cos((6 π)/29)+2 cos((7 π)/29)-sin(π/58)-sin((3 π)/58)-sin((7 π)/58)+sin((9 π)/58)+sin((11 π)/58)-sin((13 π)/58)) v->2 (cos(π/29)+cos((2 π)/29)-cos((4 π)/29)-cos((5 π)/29)-2 cos((6 π)/29)-2 sin(π/58)-sin((3 π)/58)-sin((5 π)/58)-sin((7 π)/58)-sin((9 π)/58)-2 sin((11 π)/58)+2 sin((13 π)/58)) v->2 (2 cos(π/29)-cos((2 π)/29)-cos((3 π)/29)+cos((4 π)/29)+cos((5 π)/29)-cos((7 π)/29)-2 sin((3 π)/58)-2 sin((5 π)/58)-2 sin((7 π)/58)+sin((9 π)/58)+sin((11 π)/58)-sin((13 π)/58)) v->-2 (2 cos(π/29)-cos((2 π)/29)+cos((3 π)/29)+cos((5 π)/29)+cos((6 π)/29)+cos((7 π)/29)+sin(π/58)-sin((3 π)/58)-2 sin((5 π)/58)-sin((7 π)/58)-2 sin((11 π)/58)+2 sin((13 π)/58)) v->-2 (cos(π/29)+cos((2 π)/29)-2 cos((3 π)/29)-2 cos((4 π)/29)-cos((5 π)/29)+cos((6 π)/29)-2 cos((7 π)/29)+sin(π/58)-sin((5 π)/58)-2 sin((9 π)/58)+sin((11 π)/58)-sin((13 π)/58)) v->2 (cos(π/29)+2 cos((2 π)/29)+cos((3 π)/29)+cos((4 π)/29)-2 cos((5 π)/29)+cos((6 π)/29)+cos((7 π)/29)+sin(π/58)+2 sin((3 π)/58)-sin((5 π)/58)+2 sin((7 π)/58)+sin((9 π)/58)) v->-2 (cos(π/29)-cos((3 π)/29)+2 cos((4 π)/29)-2 cos((6 π)/29)-cos((7 π)/29)-2 sin(π/58)+sin((3 π)/58)-sin((5 π)/58)+sin((7 π)/58)+2 sin((9 π)/58)-sin((11 π)/58)+sin((13 π)/58))]
Out[1335]= -5 - 2 x + 7 x^2 - 4 x^3 + x^4 + x^6>>>>>> In[1337]:= Solve[m^3 - 4 m - 2 == 0]>>>> Out[1337]= {{m -> (9 + I Sqrt[111])^(1/3)/3^(2/3) +>> 4/(3 (9 + I Sqrt[111]))^(>> 1/3)}, {m -> -(((1 + I Sqrt[3]) (9 + I Sqrt[111])^(1/3))/(>> 2 3^(2/3))) - (2 (1 - I Sqrt[3]))/(3 (9 + I Sqrt[111]))^(>> 1/3)}, {m -> -(((1 - I Sqrt[3]) (9 + I Sqrt[111])^(1/3))/(>> 2 3^(2/3))) - (2 (1 + I Sqrt[3]))/(3 (9 + I Sqrt[111]))^(1/3)}}>>>> In[1338]:= Factor[%1335, Extension -> m /. %[[1]]]>>>> Out[1338]= -(1/>> 27) (15 + (48 3^(1/3))/(9 + I Sqrt[111])^(>> 2/3) + (3 (9 + I Sqrt[111]))^(>> 2/3) + ((12 3^(2/3))/(9 + I Sqrt[111])^(1/3) +>> 3 (3 (9 + I Sqrt[111]))^(1/3)) x + 9 x^2) (-3 + (>> 48 3^(1/3))/(9 + I Sqrt[111])^(2/3) - (>> 8 3^(2/3))/(9 + I Sqrt[111])^(1/3) ->> 2 (3 (9 + I Sqrt[111]))^(1/3) + (3 (9 + I Sqrt[111]))^(>> 2/3) + (6 - (4 3^(2/3))/(9 + I Sqrt[111])^(>> 1/3) - (3 (9 + I Sqrt[111]))^(1/3)) x ->> 6 x^2 + ((4 3^(2/3))/(9 + I Sqrt[111])^(>> 1/3) + (3 (9 + I Sqrt[111]))^(1/3)) x^3 - 3 x^4)
It would be *really* nice to find a simple solver for this sqrt(cuberts) case of the sextic, which I think would finish the problem, with the surprising result that sextic solutions, instead of involving an enormous pile of 5th, 4th, 3rd, ... roots, are, if anything, simpler than quartic solutions! (And infinitely rarer.) The inverse Fourier hack *does* work for the septic below and its resolvent sextic, giving a large expression with 7th roots(cuberts(sqrts)) vs 29th roots of 1. Applying this expression to any 7 consecutive integers gives all 7 roots: (1/(2^(2/7)*7^(6/7)))*((-((29*(856512704956195*2^(2/3) - 856512704956195*I*2^(2/3)*Sqrt[3] + 236175961274505*I*2^(2/3)*Sqrt[7] + 236175961274505*2^(2/3)*Sqrt[21] + 82410846*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) + 22757210*I*Sqrt[7]*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) + 2^(1/3)*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3) + I*2^(1/3)*Sqrt[3]*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3)))/(3*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3))))^(1/7)* E^((2/7)*I*Pi*(4 - 3*#1))) + (1/(2^(2/7)*7^(6/7)))* (((29*(-856512704956195*2^(2/3) + 856512704956195*I*2^(2/3)*Sqrt[3] + 236175961274505*I*2^(2/3)*Sqrt[7] + 236175961274505*2^(2/3)*Sqrt[21] - 82410846*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) + 22757210*I*Sqrt[7]* (-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) - 2^(1/3)*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3) - I*2^(1/3)*Sqrt[3]*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3)))/(3*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3)))^(1/7)* E^((2/7)*I*Pi*(3 - 2*#1))) + (1/7^(6/7))*(((29*(856512704956195*2^(2/3) + 236175961274505*I*2^(2/3)*Sqrt[7] - 41205423*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) - 11378605*I*Sqrt[7]*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) + 2^(1/3)*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3)))/ (6*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3)))^(1/7)*E^((2*I*Pi*#1)/7)) + (1/7^(6/7))*(((29*(856512704956195*2^(2/3) - 236175961274505*I*2^(2/3)*Sqrt[7] - 41205423*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) + 11378605*I*Sqrt[7]*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) + 2^(1/3)*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3)))/ (6*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3)))^(1/7)*E^((12*I*Pi*#1)/7)) + (1/(2^(2/7)*7^(6/7)))*(((29*(-856512704956195*2^(2/3) - 856512704956195*I*2^(2/3)*Sqrt[3] - 236175961274505*I*2^(2/3)*Sqrt[7] + 236175961274505*2^(2/3)*Sqrt[21] - 82410846*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) - 22757210*I*Sqrt[7]*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) - 2^(1/3)*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3) + I*2^(1/3)*Sqrt[3]*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3)))/(3*(-28315078360483963721967 - 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 - 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3)))^(1/7)* E^((2/7)*I*Pi*(4 + 2*#1))) + (1/(2^(2/7)*7^(6/7)))* ((-((29*(856512704956195*2^(2/3) + 856512704956195*I*2^(2/3)*Sqrt[3] - 236175961274505*I*2^(2/3)*Sqrt[7] + 236175961274505*2^(2/3)*Sqrt[21] + 82410846*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) - 22757210*I*Sqrt[7]* (-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3) + 2^(1/3)*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3) - I*2^(1/3)*Sqrt[3]*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(2/3)))/(3*(-28315078360483963721967 + 14567661764710372864621*I*Sqrt[7] + 87*Sqrt[42*(207920806074244041696261258325895199249 + 94909358977115370199737368310473890157*I*Sqrt[7])])^(1/3))))^(1/7)* E^((2/7)*I*Pi*(3 + 3*#1))) & I have a slightly smaller expression for Cos[2Pi/29] - Cos[5Pi/29], etc. --rwg 2011/8/24 Bill Gosper <billgosper@gmail.com>
Really From: tpiezas@gmail.com
Hello all,
The octic,
x^8-x^7+29x^2+29 = 0 (eq.1)
(by Igor Schein) is solvable, but not as easy as merely factoring over a square root extension. Rather, this can be solvable by the 29th root of unity.
My solution to (eq.1) is, [tweaked (with permission) by rwg on the basis of numerical evidence: {8 x} = {1-a-b+c+d-e-f-g, 1+a+b+c-d-e-f+g, 1-a+b-c-d+e-f-g, 1+a-b-c+d+e-f+g, 1-a-b-c-d-e+f+g, 1+a+b-c+d-e+f-g, 1+a-b+c-d+e+f-g, 1-a+b+c+d+e+f+g} ] where each {a,b,c,d,e,f,g} = Sqrt[4v_i+1] and the v_i are the 7 roots of the septic,
8903+47647v+39672v^2+7192v^3-522v^4-174v^5+v^7 = 0 (eq.2)
The solution of which was given by Peter Montgomery as,
v_i = 2(w^11+w^13+w^16+w^18)-2(w+w^12+w^17+w^28)-(w^2+w^5+w^24+w^27)+ (w^3+w^7+w^22+w^26)+(w^4+w^10+w^19+w^25)-(w^8+w^9+w^20+w^21) and one can set w_i = {t, t^7, t^23, t^25, t^16, t^20, t^24}, and t = exp(2Pi*I/29). P.S. Similarly, a solvable 32-deg equation in x can be solved by a 31-deg Lagrange resolvent in z in the form,
x = z1^(1/2) +/- z2^(1/2) +/- ... +/- z31^(1/2)
though, unfortunately, no explicit examples are yet known.
- Tito Piezas III http://sites.google.com/site/tpiezas/ (Check this out! --rwg)
[rwg: the septic roots are all real:
v->-2 (2 cos((2 π)/29)+2 cos((3 π)/29)+cos((4 π)/29)-2 cos((5 π)/29)-cos((6 π)/29)+2 cos((7 π)/29)-sin(π/58)-sin((3 π)/58)-sin((7 π)/58)+sin((9 π)/58)+sin((11 π)/58)-sin((13 π)/58)) v->2 (cos(π/29)+cos((2 π)/29)-cos((4 π)/29)-cos((5 π)/29)-2 cos((6 π)/29)-2 sin(π/58)-sin((3 π)/58)-sin((5 π)/58)-sin((7 π)/58)-sin((9 π)/58)-2 sin((11 π)/58)+2 sin((13 π)/58)) v->2 (2 cos(π/29)-cos((2 π)/29)-cos((3 π)/29)+cos((4 π)/29)+cos((5 π)/29)-cos((7 π)/29)-2 sin((3 π)/58)-2 sin((5 π)/58)-2 sin((7 π)/58)+sin((9 π)/58)+sin((11 π)/58)-sin((13 π)/58)) v->-2 (2 cos(π/29)-cos((2 π)/29)+cos((3 π)/29)+cos((5 π)/29)+cos((6 π)/29)+cos((7 π)/29)+sin(π/58)-sin((3 π)/58)-2 sin((5 π)/58)-sin((7 π)/58)-2 sin((11 π)/58)+2 sin((13 π)/58)) v->-2 (cos(π/29)+cos((2 π)/29)-2 cos((3 π)/29)-2 cos((4 π)/29)-cos((5 π)/29)+cos((6 π)/29)-2 cos((7 π)/29)+sin(π/58)-sin((5 π)/58)-2 sin((9 π)/58)+sin((11 π)/58)-sin((13 π)/58)) v->2 (cos(π/29)+2 cos((2 π)/29)+cos((3 π)/29)+cos((4 π)/29)-2 cos((5 π)/29)+cos((6 π)/29)+cos((7 π)/29)+sin(π/58)+2 sin((3 π)/58)-sin((5 π)/58)+2 sin((7 π)/58)+sin((9 π)/58)) v->-2 (cos(π/29)-cos((3 π)/29)+2 cos((4 π)/29)-2 cos((6 π)/29)-cos((7 π)/29)-2 sin(π/58)+sin((3 π)/58)-sin((5 π)/58)+sin((7 π)/58)+2 sin((9 π)/58)-sin((11 π)/58)+sin((13 π)/58))]
participants (1)
-
Bill Gosper