[math-fun] moRe: EllipticE valuation [Was: EllipticK valuation [Was: Elliptic K π approximation]]
On Wed, Nov 7, 2012 at 3:05 PM, Bill Gosper <billgosper@gmail.com> wrote: The ("complete") first kind elliptic integral K(m) and parameter m are both expressible in 𝜗 constants, and those three+ 𝜗 constants are all expressible in terms of Dedekind η. So Out[840]= EllipticK[(16 η[q]^8 η[q^4]^16)/η[q^2]^24] == (π η[q^2]^10)/(2 η[q]^4 η[q^4]^4) Crude but effective: d/dq and eliminate EllipticK to get EllipticE[(16 \[Eta][q^4]^8)/(\[Eta][q]^8 + 16 \[Eta][q^4]^8)] == -( 1/(\[Eta][q]^8 + 16 \[Eta][q^4]^8))(-((\[Pi] \[Eta][q]^4 \[Eta][q^2]^10)/( 2 \[Eta][ q^4]^4)) - (\[Pi] \[Eta][ q^2]^9 (6 Sqrt[3] q^(3/2) logderiveta[q] \[Eta][q] \[Eta][q^2] \[Eta][q^4] - 30 Sqrt[3] q^(5/2) logderiveta[q^2] \[Eta][q] \[Eta][q^2] \[Eta][q^4] + 24 Sqrt[3] q^(9/2) logderiveta[q^4] \[Eta][q] \[Eta][q^2] \[Eta][ q^4]) (\[Eta][q]^8 + 16 \[Eta][q^4]^8))/(2 q^( 1/3) \[Eta][q]^4 \[Eta][ q^4]^4 (6 Sqrt[3] q^(7/6) logderiveta[q] \[Eta][q] \[Eta][q^4] - 24 Sqrt[3] q^(25/6) logderiveta[q^4] \[Eta][q] \[Eta][q^4])) The remaining problem is those logderivetas, but lo, ((1/(4*x) - ((logderiveta[(1/(E^x))]))/(E^x))/((DedekindEta[((x*I)/(2*Pi))])^4)) is algebraic for (x/π)^2 rational. Unfortunately, (x/π)^2= (i/2-1/√12)^2 (as in the q for k=(-1)^(1/3)) isn't rational, so EllipticE[(-1)^(1/3)] == E^(-(I π/12)) ((2 2^(1/3) π^2)/(3^(3/4) Gamma[1/3]^3) + Gamma[1/3]^3/(4 2^(1/3) 3^(1/4) π)) required Legendre's relation plus numerical empiricism. This, with the K((-1)^(1/3)) result gives closed forms for all 2F1[a+1/2,b+1/2,c;(-1)^(1/3)], a,b,c integers. Likewise for every k for which we find both K(k) and E(k), which are contiguous 2F1[k]. BtW, if you accept MatProd[mat[k],{k,2,a}] as closed form, then I can write 2F1[a+1/2,b+1/2,c;k] in closed form. --rwg
* Bill Gosper <billgosper@gmail.com> [Nov 12. 2012 16:42]:
On Wed, Nov 7, 2012 at 3:05 PM, Bill Gosper <billgosper@gmail.com> wrote: [...]
In http://oeis.org/A194094 Michael Somos gives: (2/Pi)*elliptic_E(k) = theta_3(q)^2 - 2 * (theta_4(q) / theta_3(q))^2 * Dq ( theta_4(q)^-2 ) = theta_3(q)^2 + 4 Dq (theta_4(q)) / (theta_4(q) * theta_3(q)^2) where Dq (f) := q * df/dq
participants (2)
-
Bill Gosper -
Joerg Arndt