29 Apr
2014
29 Apr
'14
12:27 p.m.
By default (i.e., trigsign:true), Macsyma (but alas, not Maxima) pulls out the sign: (c1) sin((-x)^integer) (d1) ( - 1)^integer * sin(x^integer) (Alternatively, (declare(n,integer), sin((-x)^n)) But I can't for the life of me get Mma even to pull the sign out of Assuming[n \[Element] Integers, Simplify[FunctionExpand[Sin[(-1)^n*x]]]] Yet it knows In[375]:= FullSimplify[Sin[(-1)^n*x] == (-1)^n*Sin[x], n \[Element] Integers] Out[375]= True What am I doing wrong? --rwg ARRGGH! Maxima: (%i2) binomial(-3,-5); (%o2) 6 They must have taken DoE Macsyma and *broken* it! Similarly broken is Mma, whose doc falsely claims this gives 0, which it damwell should.
4224
Age (days ago)
4224
Last active (days ago)
0 comments
1 participants
participants (1)
-
Bill Gosper