[math-fun] Amazing(?) Binomial Identity For A304126.
26 May
2020
26 May
'20
12:35 p.m.
a[n_] := Sum[Binomial[6 n, n + k] Binomial[4 n, k] (-1)^k, {k, 0, 4 n}] zero[n_] := Binomial[3 n, n] Binomial[6 n, 3 n] - Binomial[5 n, n] a[n] zero /@ Range[0, 10] See also: https://oeis.org/A304126 ( nice! ) In terms of OEIS numbering, A304126 neither divides A005809 nor A066802, yet it does divide their product A113424. This can be proven using Zeilberger's algorithm, or via ExpToODE according to the integral definition, a_n = 1/(2*pi) Int_{0..2*Pi} (2^10*cos(x)^6*sin(x)^4)^n *dx . More on this soon... --Brad
2005
Age (days ago)
2005
Last active (days ago)
0 comments
1 participants
participants (1)
-
Brad Klee