[math-fun] NSA seeks to build quantum computer
FYI -- That the NSA is interested in qubitzing is probably the least-surprising news from the Snowden leaks. http://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-qua... NSA seeks to build quantum computer that could crack most types of encryption By Steven Rich and Barton Gellman In room-size metal boxes, secure against electromagnetic leaks, the National Security Agency is racing to build a computer that could break nearly every kind of encryption used to protect banking, medical, business and government records around the world. According to documents provided by former NSA contractor Edward Snowden, the effort to build Âa cryptologically useful quantum computer  a machine exponentially faster than classical computers  is part of a $79.7 million research program titled, ÂPenetrating Hard Targets. Much of the work is hosted under classified contracts at a laboratory in College Park. [Read an annotated description of the Penetrating Hard Targets project] The development of a quantum computer has long been a goal of many in the scientific community, with revolutionary implications for fields like medicine as well as for the NSAÂs code-breaking mission. With such technology, all forms of public key encryption would be broken, including those used on many secure Web sites as well as the type used to protect state secrets. Physicists and computer scientists have long speculated whether the NSAÂs efforts are more advanced than those of the best civilian labs. Although the full extent of the agencyÂs research remains unknown, the documents provided by Snowden suggest that the NSA is no closer to success than others in the scientific community. ÂIt seems improbable that the NSA could be that far ahead of the open world without anybody knowing it, said Scott Aaronson, an associate professor of electrical engineering and computer science at MIT. The NSA appears to regard itself as running neck and neck with quantum computing labs sponsored by the European Union and the Swiss government, with steady progress but little prospect of an immediate breakthrough. ÂThe geographic scope has narrowed from a global effort to a discrete focus on the European Union and Switzerland, one NSA document states. Seth Lloyd, professor of quantum mechanical engineering at MIT, said the NSAÂs focus is not misplaced. ÂThe E.U. and Switzerland have made significant advances over the last decade and have caught up to the U.S. in quantum computing technology, he said. The NSA declined to comment for this story. The documents, however, indicate that the agency carries out some of its research in large, shielded rooms known as Faraday cages, which are designed to prevent electromagnetic energy from coming in or out. Those, according to one brief description, are required Âto keep delicate quantum computing experiments running. [Read a document describing classification levels related to quantum computing efforts] The basic principle underlying quantum computing is known as Âquantum superposition, the idea that an object simultaneously exists in all states. A classical computer uses binary bits, which are either zeroes or ones. A quantum computer uses quantum bits, or qubits, which are simultaneously zero and one. This seeming impossibility is part of the mystery that lies at the heart of quantum theory, which even theoretical physicists say no one completely understands. ÂIf you think you understand quantum mechanics, you donÂt understand quantum mechanics, said the late Nobel laureate Richard Feynman, who is widely regarded as the pioneer in quantum computing. HereÂs how it works, in theory: While a classical computer, however fast, must do one calculation at a time, a quantum computer can sometimes avoid having to make calculations that are unnecessary to solving a problem. That allows it to home in on the correct answer much more quickly and efficiently. Quantum computing is so difficult to attain because of the fragile nature of such computers. In theory, the building blocks of such a computer might include individual atoms, photons or electrons. To maintain the quantum nature of the computer, these particles would need to be carefully isolated from their external environments. ÂQuantum computers are extremely delicate, so if you donÂt protect them from their environment, then the computation will be useless, said Daniel Lidar, a professor of electrical engineering and the director of the Center for Quantum Information Science and Technology at the University of Southern California. A working quantum computer would open the door to easily breaking the strongest encryption tools in use today, including a standard known as RSA, named for the initials of its creators. RSA scrambles communications, making them unreadable to anyone but the intended recipient, without requiring the use of a shared password. It is commonly used in Web browsers to secure financial transactions and in encrypted e-mails. RSA is used because of the difficulty of factoring the product of two large prime numbers. Breaking the encryption involves finding those two numbers. This cannot be done in a reasonable amount of time on a classical computer. In 2009, computer scientists using classical methods were able to discover the primes within a 768-bit number, but it took almost two years and hundreds of computers to factor it. The scientists estimated that it would take 1,000 times longer to break a 1,024-bit encryption key, which is commonly used for online transactions. A large-scale quantum computer, however, could theoretically break a 1,024-bit encryption much faster. Some leading Internet companies are moving to 2,048-bit keys, but even those are thought to be vulnerable to rapid decryption with a quantum computer. Quantum computers have many applications for todayÂs scientific community, including the creation of artificial intelligence. But the NSA fears the implications for national security. ÂThe application of quantum technologies to encryption algorithms threatens to dramatically impact the US governmentÂs ability to both protect its communications and eavesdrop on the communications of foreign governments, according to an internal document provided by Snowden. Experts are not sure how feasible a quantum computer is in the near future. A decade ago, some experts said that developing a large quantum computer was likely 10 to 100 years in the future. Five years ago, Lloyd said the goal was at least 10 years away. Last year, Jeff Forshaw, a professor at the University of Manchester, told BritainÂs Guardian newspaper, ÂIt is probably too soon to speculate on when the first full-scale quantum computer will be built but recent progress indicates that there is every reason to be optimistic. ÂI donÂt think weÂre likely to have the type of quantum computer the NSA wants within at least five years, in the absence of a significant breakthrough maybe much longer, Lloyd told the Post in a recent interview. However, some companies claim to already be producing small quantum computers. A Canadian company, D-Wave Systems , says it has been making quantum computers since 2009. In 2012, it sold a $10 million version to Google, NASA and the Universities Space Research Association, according to news reports. That quantum computer, however, would never be useful for breaking public key encryption like RSA. ÂEven if everything theyÂre claiming is correct, that computer, by its design, cannot run ShorÂs algorithm, said Matthew Green, a research professor at the Johns Hopkins Information Security Institute, referring to the algorithm that could be used to break encryption like RSA. Experts believe that one of the largest hurdles to breaking encryption with a quantum computer is building a computer with enough qubits, which is difficult given the very fragile state of quantum computers. By the end of September, the NSA expected to be able to have some basic building blocks, which it described in a document as Âdynamical decoupling and complete quantum control on two semiconductor qubits. ÂThatÂs a great step, but itÂs a pretty small step on the road to building a large-scale quantum computer, Lloyd said. A quantum computer capable of breaking cryptography would need hundreds or thousands more qubits than that. The budget for the National Intelligence Program, commonly referred to as the Âblack budget, details the ÂPenetrating Hard Targets project and noted that this step Âwill enable initial scaling towards large systems in related and follow-on efforts. Another project, called the ÂOwning the Net, is using quantum research to support the creation of new quantum-based attacks on encryptions like RSA, documents show. ÂThe irony of quantum computing is that if you can imagine someone building a quantum computer that can break encryption a few decades into the future, then you need to be worried right now, Lidar said.
Hello Mr Baker, yes, this goes exactly in the direction of what E.S. was telling everybody about BUT : if I may. Those quantum computers and for example this Vancouver company claiming to have built one that does work, is... questionable. What I think they have is a set of backdoors that they programmed in conjonction with RSA, microsoft, google, yahoo and all that. If we pull back a little, we realize that they more or less managed to use backdoors on most of the fiber optic backbones of the internet, the CISCO companies and routers and all that. Of course this pursuit of the quantum possibility of having a computer that can do 10^n computations in 1 second is mind blowing but I think we are not yet at this point of having the real possibility that such a device does exist yet. I am sure that : eventually, we will be able to have a machine that can do such computations in 1 second but I think that it will only push the <n> factor a little more and that's it. I think that we are not yet aware of what a computation means exactly, this quantum thing is one step in that direction, but only the first step, we are not yet there. I am not surprised that the NSA is looking at these devices, of course they are, and... according to E.S. they are probably spoofing and sniffing all the people around these devices as well, which is the equivalent of having a big budget on this. Well, I would be in their position, this is what I would do too. there are no secrets anymore, ! they know everything there is to know on this. I bet they probably have someone looking at ways to sniff or spy on these devices already... This is my opinion, Best regards, Simon Plouffe
Hello Mr Baker, yes, I agree with Richard Feynman, I think I understand quantum mechanic, therefore I do not. I think , therefore I do not. That's funny. Simon Plouffe
On 1/2/2014 4:35 PM, Henry Baker wrote:
Quantum computers have many applications for today's scientific community, including the creation of artificial intelligence. But the NSA fears the implications for national security.
Artificial products are always created when the natural version is in short supply. Brent Meeker
participants (3)
-
Henry Baker -
meekerdb -
Simon Plouffe