Re: [math-fun] Heterodigital triplets
my april math magic problem
... Nice, Erich ! How do you do to be always a step ahead of my thoughts ;-) ? Best, É. -----Message d'origine----- De : math-fun-bounces@mailman.xmission.com [mailto:math-fun-bounces@mailman.xmission.com] De la part de Erich Friedman Envoyé : mardi 31 mars 2009 15:18 À : math-fun Objet : Re: [math-fun] Heterodigital triplets i'm working on something similar: finding integers that can be factored both pandigitally (with or without 0) and unidigitally, such as 5476 × 198 × 32 = 2 × 2 × 2 × 2 × 2 × 22 × 222 × 222 results and variations on the theme are my april math magic problem: http://www.stetson.edu/~efriedma/mathmagic/0409.html erich
Find all heterodigital triplets (a;b;c) such that a, b, c, s, and p is an heterodigital quintuplet
There is at least one such quintuplet which is heteropandigital (all digits from 0-->9 are used)
_______________________________________________ math-fun mailing list math-fun@mailman.xmission.com http://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun
participants (1)
-
Eric Angelini