[math-fun] Re^2: FW: A conjectural series for 1/pi of a new type
Simon>hello everybody, about that formula for 1/pi, SP>it is nice , the coefficient a(k) is a binomial term SP>The sequence a(k) is : 1, 1, 33, 97, 1729, 8001, 105441, 627873, 6989697, 48363649, 488206753, 3701949153, 35289342529, 283146701761, 2610495177057, 21695983405857, 196218339243777, 1667338615773441, 14917038493453089, 128562758660255073, 1143482133220664769, 9946278255903268929, 88205310329762729697, 771946983805271894433, 6837125121111415598721,... SP>a(k] has this g.f. 1 -------------------- = 2 1/2 (1 - 2 x - 63 x ) How did you get this? SP>Now, this has a closed binomial expression, of course Julian used the trinomial theorem to get a(k)==Hypergeometric2F1[1/2 - k/2, -(k/2), 1, 64] Did you mean something different? Nicer?? Julian's yields numerous triangular double sums for 24/pi, e.g. Sum[((Sum[((Binomial[2 * (2 * i - k), 2 * i - k])^2 * (2 * i - k)! * ( - 30 * k + 60 * i + 7) * ( - 1)^k * 2^(4 * k)/(((i - k)!)^2 * k!)), List[k, 0, i]])/(2^(12 * i))), List[i, 0, Infinity]], Sum[(((30 * k + 7) * k! * (Binomial[2 * k, k])^2 * Sum[((16^i)/((i!)^2 * (k - 2 * i)!)), List[i, 0, Floor[k/2]]])/(( - 256)^k)), List[k, 0, Infinity]], Sum[Sum[((16^i * (30 * (k + i) + 7) * (k + i)! * (Binomial[2 * (k + i), k + i])^2)/((i!)^2 * ( - 256)^(k + i) * (k - i)!)), List[i, 0, k]], List[k, 0, Infinity]], and this wild thing: 160/(7*Pi) + (28*EllipticK[(1/2)*(1 - (3*Sqrt[7])/8)]^2)/Pi^2 - (25*Gamma[1/7]^2*Gamma[2/7]^2*Gamma[4/7]^2)/(14*Sqrt[7]*Pi^4) - 30*Sum[(k*Binomial[2*k, k]^2* HypergeometricPFQ[{1 - k, 1/2 + k, 1/2 + k}, {1, 1 + k}, 1])/(-256)^k, {k, 1, Infinity}] (We're trying to get 24/pi and it gives us something plus 160/(7 pi).) But unless one of these can be written with the inner summand free of the outer index, these have an asymptotic convergence rate of *zero* bits/term. The >0 estimates cheat by assuming a(k) is free, or rather constant(k). It remains, however an intriguing conjecture. --rwg
* Bill Gosper <billgosper@gmail.com> [Jan 27. 2011 13:56]:
Simon>hello everybody, about that formula for 1/pi,
SP>it is nice , the coefficient a(k) is a binomial term
SP>The sequence a(k) is : 1, 1, 33, 97, 1729, 8001, 105441, 627873, 6989697, 48363649, 488206753, 3701949153, 35289342529, 283146701761, 2610495177057, 21695983405857, 196218339243777, 1667338615773441, 14917038493453089, 128562758660255073, 1143482133220664769, 9946278255903268929, 88205310329762729697, 771946983805271894433, 6837125121111415598721,...
SP>a(k] has this g.f. 1 -------------------- = 2 1/2 (1 - 2 x - 63 x )
How did you get this?
Let me guess: http://oeis.org/A098441
[...]
Yes, I already did that too, here is the result : http://www.plouffe.fr/simon/seqb/098/b098441.txt there are 4293 terms. Those files were made using GFUN that has found about 30000 generating functions, and from that I computed all the possible values of these G.F. , it makes about 148 gigabytes of data. the formulas are here : http://www.plouffe.fr/simon/OEIS/conjectures/OEIS_conjectured_formulas.txt best regards, Simon Plouffe
Le 2011-01-27 13:31, Bill Gosper a écrit :
1, 1, 33, 97, 1729, 8001, 105441, 627873, 6989697, 48363649, 488206753, 3701949153, 35289342529, 283146701761, 2610495177057, 21695983405857, 196218339243777, 1667338615773441, 14917038493453089, 128562758660255073, 1143482133220664769, 9946278255903268929, 88205310329762729697, 771946983805271894433, 6837125121111415598721 I used GFUN, with guessgf
[1, 1, 33, 97, 1729, 8001, 105441, 627873, 6989697, 48363649, 488206753, 3701949153, 35289342529, 283146701761, 2610495177057, 21695983405857, 196218339243777, 1667338615773441, 14917038493453089, 128562758660255073, 1143482133220664769, 9946278255903268929, 88205310329762729697, 771946983805271894433, 6837125121111415598721]
guessgf(%,x); 1 [--------------------, ogf] 2 1/2 (1 - 2 x - 63 x )
It is very efficient, usually a dozen terms is enough to detect any kind of formulas of that type. There is another way when we suspect that the sequence has an algebraic generating function and it uses LLL or PSLQ, I made an article about that method a while ago : the paper is here : http://arxiv.org/pdf/0912.0072 Simon Plouffe
participants (3)
-
Bill Gosper -
Joerg Arndt -
Simon Plouffe