RE: [math-fun] ~s solid angle <- trihedral angles
Hi, Bill. I'm always interested in your many identities (no, not aliases), but with my e-mail set to my favorite font (Garamond), they come across mangled somewhat. In trying what used to always work -- just copying your text to a primitive editor (Notepad) to an equal-width font, the text no longer reconstructs itself. Even after pushing some obvious things into place, I'm still not sure what you wrote. E.g., your trihedral post today came out after massaging as follows in Courier New: (cos(c) + cos(b) + cos(a) + 1) 2 acos(-------------------------------------- - 1). (cos(a) + 1) (cos(b) + 1) (cos(c) + 1) Duh, cos(c) + cos(b) + cos(a) + 1 2 acos(----------------------------). a b c 4 cos(-) cos(-) cos(-) 2 2 2 Any suggestions? Regards, Dan
Dan Asimov wrote:
In trying what used to always work -- just copying your text to a primitive editor (Notepad) to an equal-width font, the text no longer reconstructs itself.
Looks OK to me. Will your mail client let you save the message into a file that you can then open in Notepad? Here's the relevant bit of rwg's message with spaces replaced by "." characters; perhaps that will discourage mangling. A.couple.of.years.ago.I.here.gave ...............................................2 .................(cos(c).+.cos(b).+.cos(a).+.1) .........acos(--------------------------------------.-.1). ..............(cos(a).+.1).(cos(b).+.1).(cos(c).+.1) Duh, ....................cos(c).+.cos(b).+.cos(a).+.1 .............2.acos(----------------------------). .............................a......b......c .......................4.cos(-).cos(-).cos(-) .............................2......2......2 Imaginary.result.means.you.violated.the.triangle.inequality...Tsk. --rwg PS,.for.those.interested.in.trig.exercises,.this.started.out.as .....cos(a).-.cos(b).cos(c).........cos(b).-.cos(a).cos(c) acos(----------------------).+.acos(----------------------) .........sin(b).sin(c)..................sin(a).sin(c) .........................................cos(c).-.cos(a).cos(b) ..................................+.acos(----------------------).-.%pi .............................................sin(a).sin(b) The key thing I think you guessed wrong in your rearrangement is that "4 cos a/2 cos b/2 cos c/2" was the denominator; not just abc. :-) -- g
participants (2)
-
Daniel Asimov -
Gareth McCaughan