In[2]:= Round[#] - Floor[#] &[(1/3* (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)))^Range[288]] Out[2]= {1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, \ 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, \ 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, \ 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, \ 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, \ 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, \ 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, \ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \ 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1} In[3]:= Drop[%, 3] - Drop[%, -3] Out[3]= {-1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} In[4]:= Position[Abs[%], 1] Out[4]= {{1}, {3}, {5}, {18}, {31}, {44}, {57}, {70}, {83}, {93}, \ {106}, {119}, {132}, {145}, {158}, {171}, {184}, {197}, {210}, {223}, \ {236}, {249}, {262}, {275}, {285}} In[5]:= Differences[Flatten[%]] Out[5]= {2, 2, 13, 13, 13, 13, 13, 13, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 10} --rwg (I'd explain the scatology of 288, but it's too gross.)
Let t:=1/3 (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)), the tribonacci constant. Then, empirically, Sum[Round[x^n]-x^n,{n,0,∞}] ==-0.80851211604688125... -2 + ((3 Sqrt[3] - Sqrt[11])^(1/3) + (3 Sqrt[3] + Sqrt[11])^(1/3))/(2^(2/3) Sqrt[3]) --rwg On Tue, Sep 10, 2013 at 11:50 AM, Bill Gosper <billgosper@gmail.com> wrote:
In[2]:= Round[#] - Floor[#] &[(1/3* (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)))^Range[288]]
Out[2]= {1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, \ 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, \ 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, \ 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, \ 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, \ 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, \ 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, \ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \ 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1}
In[3]:= Drop[%, 3] - Drop[%, -3]
Out[3]= {-1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
In[4]:= Position[Abs[%], 1]
Out[4]= {{1}, {3}, {5}, {18}, {31}, {44}, {57}, {70}, {83}, {93}, \ {106}, {119}, {132}, {145}, {158}, {171}, {184}, {197}, {210}, {223}, \ {236}, {249}, {262}, {275}, {285}}
In[5]:= Differences[Flatten[%]]
Out[5]= {2, 2, 13, 13, 13, 13, 13, 13, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 10}
--rwg (I'd explain the scatology of 288, but it's too gross.)
When I try to evaluate that exact sum in Mma, it gives me only numbers that are to > 20 decimal places equal to 0. (Adding only 1000 or 10000 terms, asking for 10 digits' precision.) I'd guess only a set of measure 0 of real numbers x would have their Sum[Round[x^n]-x^n,{n,0,∞}] <> 0. But it's easy to believe that many algebraic numbers don't. What's your secret? --Dan On 2013-09-10, at 8:11 PM, Bill Gosper wrote:
Let t:=1/3 (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)), the tribonacci constant. Then, empirically, Sum[Round[x^n]-x^n,{n,0,∞}] ==-0.80851211604688125... -2 + ((3 Sqrt[3] - Sqrt[11])^(1/3) + (3 Sqrt[3] + Sqrt[11])^(1/3))/(2^(2/3) Sqrt[3])
participants (2)
-
Bill Gosper -
Dan Asimov