[math-fun] Areals of circular points
4 Apr
2012
4 Apr
'12
9:52 a.m.
The circular points at infinity have the following (unnormalised) areals: x = a^2 (2a^2 - b^2 - c^2) - (c^2 - b^2)(c^2 - b^2 + delta) y = b^2 (2b^2 - c^2 - a^2) - (a^2 - c^2)(a^2 - c^2 + delta) z = c^2 (2c^2 - a^2 - b^2) - (b^2 - a^2)(b^2 - a^2 + delta) where delta = ± sqrt(a^4 + b^4 + c^4 - a^2 b^2 - b^2 c^2 - c^2 a^2) = ± sqrt((-a-b-c)(-a+b+c)(a-b+c)(a+b-c)) = ± 4i [ABC], where [ABC] is the area of the reference triangle. The sign choice for delta determines which of the two circular points is being specified. Sincerely, Adam P. Goucher
4979
Age (days ago)
4979
Last active (days ago)
0 comments
1 participants
participants (1)
-
Adam P. Goucher