[math-fun] count of terms in cyclotomic polynomial
the count of terms in cyclotomic polynomial bigPhi(n,x), say c, and the largest prime factor of n, say p, are known to coïncide for all n except those in a beheaded A070537= [[ 1 ]] ,15,21,30,33,35,39,42,45... in which case p<c (conjecture) It seems that A070537 also equals the values of n where w(n) is *larger* than the largest prime factor of n. with w(n)=1+ InverseMoebiusTransform( seq_z ) with seq_z equal to the sequence defined by mu(n) Sum(d|n, phi(d) mu(d) ) we get p<c<w OR p=c=w I don't see an evident link, do you? Wouter. (* sequences seq_z and w(n) pending desimbicilisation *) ____________________________________________ Please ignore the Mathematica code below: w=1+invmoebius[Table[MoebiusMu[n] Fold[ EulerPhi[#2] MoebiusMu[#2]+#1&, 0, Divisors[n]],{n,100}]] and invmoebT[partiallist:{__Integer}]:=Block[{n=Length[partiallist]},Fold[#1+par tiallist[[#2]]&,0,Divisors[n]]]; invmoebius[argSeq:{__Integer}]:=Table[invmoebT[Take[argSeq,i]],{i,Length[arg Seq]}]; c=Table[Length[Cyclotomic[n,x]], {n,100}] p=Table[If[n===1,2,Part[FactorInteger[n],-1,1]], {n,100}] triad=Transpose[{c,p,w}] diff=Select[triad,UnsameQ@@#&] A070537=Flatten@ Position[triad,q_List/;UnsameQ @@ q] ____________________________________________
if seq_z(n) equals mu(n) Sum(d|n, phi(d) mu(d) ) then, for all sqarefree n, with prime decomposition p*q*r*..*z seq_z[n] = (p-2)*(q-2)*(r-2)*...*(z-2) still boring? W.
participants (1)
-
wouter meeussen