[math-fun] a bit of precision fraud
too late for April 1st: Out[666]= EllipticTheta[2, 0, Catalan] EllipticTheta[3, 0, Catalan] == -π/Log[Catalan] In[667]:= N[%] Out[667]= True In[668]:= N[List @@ %%, 69] Out[668]= {35.7908268633193865771253088986699000335476024418014552592829359941761, 35.7908268633193865771253088986699000335476024418014552592829359941761} In[676]:= $MaxExtraPrecision = 999; N[Subtract @@ %666, 22] Out[676]= -3.101101704291470266693*10^-96 (Based on the last formula in gosper.org/pathi.pdf) --rwg
On Fri, Jun 5, 2015 at 7:46 AM, Bill Gosper <billgosper@gmail.com> wrote:
too late for April 1st: Out[666]= EllipticTheta[2, 0, Catalan] EllipticTheta[3, 0, Catalan] == -π/Log[Catalan]
In[667]:= N[%]
Out[667]= True
In[668]:= N[List @@ %%, 69]
Out[668]= {35.7908268633193865771253088986699000335476024418014552592829359941761, 35.7908268633193865771253088986699000335476024418014552592829359941761}
In[676]:= $MaxExtraPrecision = 999; N[Subtract @@ %666, 22]
Out[676]= -3.101101704291470266693*10^-96 (Based on the last formula in gosper.org/pathi.pdf) --rwg
An early draft of a second chapter: gosper.org/hyper3by3.pdf --rwg
On Wed, Jun 10, 2015 at 5:48 AM, Bill Gosper <billgosper@gmail.com> wrote:
On Fri, Jun 5, 2015 at 7:46 AM, Bill Gosper <billgosper@gmail.com> wrote:
too late for April 1st: Out[666]= EllipticTheta[2, 0, Catalan] EllipticTheta[3, 0, Catalan] == -π/Log[Catalan]
In[667]:= N[%]
Out[667]= True
In[668]:= N[List @@ %%, 69]
Out[668]= {35.7908268633193865771253088986699000335476024418014552592829359941761, 35.7908268633193865771253088986699000335476024418014552592829359941761}
In[676]:= $MaxExtraPrecision = 999; N[Subtract @@ %666, 22]
Out[676]= -3.101101704291470266693*10^-96 (Based on the last formula in gosper.org/pathi.pdf) --rwg
An early draft of a second chapter: gosper.org/hyper3by3.pdf --rwg
Now a later draft. --rwg
participants (1)
-
Bill Gosper