Re: [math-fun] somewhat related to "words for really long numbers"
From: Robert Baillie <rjbaillie@frii.com <http://gosper.org/webmail/src/compose.php?send_to=rjbaillie%40frii.com>> To: math-fun <math-fun@mailman.xmission.com <http://gosper.org/webmail/src/compose.php?send_to=math-fun%40mailman.xmission.com>>>Sent: Monday, September 26, 2011 4:24 PM>Subject: [math-fun] somewhat related to "words for really long numbers">>8,018,018,851 is the first prime number in alphabetical order (in english) (eight billion eighteen million eighteen thousand eight hundred fifty one)>>the last prime in alphabetical order is>2,000,000,000,000,000,000,000,000,002,000,000,000,000,000,000,000,002,000,000,002,293>(two vigintillion two undecillion two trillion two thousand two hundred ninety-three)>>see:>http://www.primepuzzles.net/puzzles/puzz_143.htm>_______________________________________________
ES>In order to justify the claim for the last prime, it seems necessary to have a naming algorithm that accepts all integers. Does such exist? -- Gene ------- Yeah, what about 2*10^4679+3, (two zillion and three)-? --rwg Mathematica 8.01 pronounces the "and" for 203, ..., 200003, but seems to say "two million n three", etc., and for 20000000003, "Approximately two point zero failed power".
Henceforth, 2e4679+3 is "Gosper's Prime". ----- Quoting Bill Gosper <billgosper@gmail.com>:
From: Robert Baillie <rjbaillie@frii.com <http://gosper.org/webmail/src/compose.php?send_to=rjbaillie%40frii.com>> To: math-fun <math-fun@mailman.xmission.com <http://gosper.org/webmail/src/compose.php?send_to=math-fun%40mailman.xmission.com>>>Sent: Monday, September 26, 2011 4:24 PM>Subject: [math-fun] somewhat related to "words for really long numbers">>8,018,018,851 is the first prime number in alphabetical order (in english) (eight billion eighteen million eighteen thousand eight hundred fifty one)>>the last prime in alphabetical order is>2,000,000,000,000,000,000,000,000,002,000,000,000,000,000,000,000,002,000,000,002,293>(two vigintillion two undecillion two trillion two thousand two hundred ninety-three)>>see:>http://www.primepuzzles.net/puzzles/puzz_143.htm>_______________________________________________
ES>In order to justify the claim for the last prime, it seems necessary to have a naming algorithm that accepts all integers. Does such exist?
-- Gene ------- Yeah, what about 2*10^4679+3, (two zillion and three)-? --rwg Mathematica 8.01 pronounces the "and" for 203, ..., 200003, but seems to say "two million n three", etc., and for 20000000003, "Approximately two point zero failed power". _______________________________________________ math-fun mailing list math-fun@mailman.xmission.com http://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun
rwg: "Yeah, what about 2*10^4679+3, (two zillion and three)-?" rcs: "Henceforth, 2e4679+3 is 'Gosper's Prime'." *Probably*... But what does that make 2e9821+3?
participants (3)
-
Bill Gosper -
Hans Havermann -
rcs@xmission.com