[math-fun] A bbp for the numbers different from 2 and 3 is it possible??
I came very close to a generalized BBP formula for all numbers. But that's a pity ... I still found some formulas that I suppose new... x=sum(sum(((-1)^(j+1)*(binomial(n,j))*sinh(j*x))/k^j,j=1..n)/n,n=1..inf); by variable change x=sum(sum(((-1)^(j+1)*(binomial(n,j))*sin(j*x))/k^j,j=1..n)/n,n=1..inf); we cant get: Pi/4=sum(sum(((-1)^(j+1)*(binomial(n,j))*sin(j*Pi/4))/k^j,j=1..n)/n,n=1..inf); Pi/8=sum(sum(((-1)^(j+1)*(binomial(n,j))*sin(j*Pi/8))/k^j,j=1..n)/n,n=1..inf); true result with some exceptions on integers k Pi/4=sum(sum(((-1)^(j+1)*(binomial(n,j))*sin(j*Pi/4))/2^j,j=1..n)/n,n=1..inf); Pi/4=sum(sum(((-1)^(j+1)*(binomial(n,j))*sin(j*Pi/4))/3^j,j=1..n)/n,n=1..inf); Pi/4=sum(sum(((-1)^(j+1)*(binomial(n,j))*sin(j*Pi/4))/5^j,j=1..n)/n,n=1..inf);
participants (1)
-
françois mendzina essomba2