[math-fun] Geometry puzzle
15 Feb
2009
15 Feb
'09
2:42 p.m.
In R^n, consider the integer points whose coordinates sum to 0. Call this abelian group Z_n. Then Z_n is an (n-1)-dimensional lattice in R^n, lying in a unique (n-1)-dimensional subspace S of R^n. In S, Z_n has a well-defined Voronoi cell at (say) the origin: P_n := { x in S | for all v in L, ||x|| <= ||x-v|| }. Find the (n-1)-dimensional volume V(n) of P_n: V(n) := vol_(n-1)(P_n) without using any references. --Dan _____________________________________________________________________ "It don't mean a thing if it ain't got that certain je ne sais quoi." --Peter Schickele
6123
Age (days ago)
6123
Last active (days ago)
0 comments
1 participants
participants (1)
-
Dan Asimov