For distinct a,b,c you can express their median using min, max and arithmetic operators by a + b + c - min(a,b,c) - max(a,b,c) Can you construct something elegant for a,b,c,d,e?
At 12:16 PM 7/26/2004, Marc LeBrun wrote:
For distinct a,b,c you can express their median using min, max and arithmetic operators by
a + b + c - min(a,b,c) - max(a,b,c)
Can you construct something elegant for a,b,c,d,e?
How about a + b + c + d + e - min(a,b,c,d) - min(a,b,c,e) - min(a,b,d,e) - min(a,c,d,e) - min(b,c,d,e) - max(a,b,c,d) - max(a,b,c,e) - max(a,b,d,e) - max(a,c,d,e) - max(b,c,d,e) + 3*min(a,b,c,d,e) + 3*max(a,b,c,d,e) ? -- Fred W. Helenius <fredh@ix.netcom.com>
Any Knuth sorting network can be implemented by means of min & max. At 09:16 AM 7/26/2004, Marc LeBrun wrote:
For distinct a,b,c you can express their median using min, max and arithmetic operators by
a + b + c - min(a,b,c) - max(a,b,c)
Can you construct something elegant for a,b,c,d,e?
participants (3)
-
Fred W. Helenius -
Henry Baker -
Marc LeBrun