Okay good, thanks Bill, we only need about 60 digits anyways, and some of us are having trouble with the gamma function. —Brad
On Aug 6, 2020, at 10:46 AM, Bill Gosper <billgosper@gmail.com> wrote:
In[382]:= N[Gamma[1/3], 85]
Out[382]= 2.678938534707747633655692940974677644128689377957301100950428327590417610167743819541
In[383]:= N[(2^(14/9) 3^(55/108) (π Sinh[9 √3 π])^(2/3))/(6^(1/3) (1 + 2^(2/3))/(1 + 2^(1/3)) - 3^(2/3))^(2/9)/√E^(13 √3 π), 85]
Out[383]= 2.67893853470774763365569294097467764412868937795730110095042832759041\7610167743819541
On Tue, Aug 4, 2020 at 9:39 AM Bill Gosper <billgosper@gmail.com> wrote:
Out[364]= Gamma[1/4]==(1+√√5)^(3/2) √(5 (1+√2) (√2+√√5)) (1+√5)^(11/4) √√(3+√10) E^(-65π/3)π^(3/4) Sinh[20π]/2^(11/16)
In[372]:= N[%364,105]
Out[372]=3.62560990822190831193068515586767200299516768288006546743337799956991924353872912161836013672338430036147
==3.62560990822190831193068515586767200299516768288006546743337799956991924353872912161836013672338430036147 —rwg
_______________________________________________ math-fun mailing list math-fun@mailman.xmission.com https://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun