<< In[2]:= den(x_,y_,z_] := ... >> Mismatched bracket/parenthesis ? WFL On 6/3/15, Veit Elser <ve10@cornell.edu> wrote:
exploiting symmetry:
Integrate[(x y z - (1 - x) (1 - y) (1 - z))^2/((1 - y (1 - z)) (1 - z (1 - x)) (1 - x (1 - y))), {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]
gives
10 - π^2 = 0.130396
So clearly a Mma bug. Report it and maybe you’ll get a free license!
On Jun 2, 2015, at 5:45 PM, Dan Asimov <asimov@msri.org> wrote:
In[1]:= num[x_,y_,z_] := (x y z - (1-x)(1-y)(1-z))^2
In[2]:= den(x_,y_,z_] := (1-x(1-z))(1-y(1-x))(1-z(1-y))
In[3]:= f[x_,y_,z_] := num[x,y,z]/den[x,y,z]
In[4]:= NIntegrate[f[x,y,z],{x,0,1},{y,0,1},{z,0,1}]
Out[4]= 0.130396
but:
In[5]:= Integrate[f[x,y,z],{x,0,1},{y,0,1},{z,0,1}]
Out[5]= 10
10 ??? Huh??? (Especially since the maximum value of f[x,y,z] over [0,1]^3 is f[0,0,0] = 1.)
Rational explanations, if any, welcomed.
——Dan _______________________________________________ math-fun mailing list math-fun@mailman.xmission.com https://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun
_______________________________________________ math-fun mailing list math-fun@mailman.xmission.com https://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun