10 Oct
2012
10 Oct
'12
3:46 a.m.
* meg <njasloane@gmail.com> [Oct 09. 2012 07:01]:
Joerg, Yes, certainly! Thank you! Neil
[...]
Now in https://oeis.org/draft/A003106 :
From _Joerg Arndt_, Oct 10 2012: (Start) R. W. Gosper gives (message to the math-fun mailing list, Oct 07 2012) prod(k>=0, [0 , a; q^k, 1]) = [0, X(a,q); 0, Y(a,q)] where X(a,q) = a * sum(n>=0, a^n*q^(n^2) / prod(k=1..n, 1-q^n) ) and Y(a,q) = sum(n>=0, a^n*q^(n^2-n) / prod(k=1..n, 1-q^n) ). Set a=q to obtain prod(k>=0, [0 , a; q^k, 1]) = [0, q*H(q); 0, G(q)] where H(q) is the g.f. of A003106 and G(q) is the g.f. of A003114. (End)
I will now look at the following message. Regards, jj