Simply sumswapping the constant term in the Weierstrass P double series, 1 inf y + - ==== y \ y 1 1 ----- - > (------------- + -------------) = --. 6 / 2 2 m pi pi ==== sinh (m pi y) sinh (----) y m = 1 y E.g., for y=1, inf ==== 1 \ 1 1 - - 2 > ----------- = --. 3 / 2 pi ==== sinh (m pi) m = 1 Combining with y=1+i, inf ==== \ 1 1 2 > ----------------- = -- / 2 1 pi ==== cosh ((m - -) pi) m = 1 2 With y=sqrt 2 inf ==== 1 \ cosh(sqrt(2) m pi) + 2 sqrt(2) - - 2 > ---------------------- = -------. 2 / 2 pi ==== sinh (sqrt(2) m pi) m = 1 With y=1 and 2, inf ==== \ 2 cosh(m pi) 1 1 1 > (------------ - -----------) = - - ----. / 2 2 3 2 pi ==== sinh (m pi) cosh (m pi) m = 1 With y=cis x, inf ==== i x cos(x) \ e 1 ------ - 2 > Re ---------------- = --. 3 / 2 i x pi ==== sinh (pi m e ) m = 1 With x= pi/6, inf ==== \ 1 1 1 > ------------- = - - ----------. / 2 6 sqrt(3) pi ==== sinh (m pi y) m = 1 (There are doubtless better ways to take log(e^pi).) --rwg --------------------------------- Never miss a thing. Make Yahoo your homepage.