A point on the unit circle: In[471]:= (((Sqrt[5] + 1)*(-Sqrt[Sqrt[17] - 3]* Sqrt[4*Sqrt[17] - 2*Sqrt[2*Sqrt[17] + 34]] + Sqrt[2*Sqrt[17] + 34] + Sqrt[17] + 1)/ 64) - ((Sqrt[5 - Sqrt[5]]* Sqrt[Sqrt[Sqrt[17] - 3]* Sqrt[2*Sqrt[2*Sqrt[17] + 34] + 4*Sqrt[17]] - Sqrt[2*Sqrt[17] + 34] + Sqrt[17] + 17])/16))* I + (((Sqrt[5] + 1)* Sqrt[Sqrt[Sqrt[17] - 3]* Sqrt[2*Sqrt[2*Sqrt[17] + 34] + 4*Sqrt[17]] - Sqrt[2*Sqrt[17] + 34] + Sqrt[17] + 17])/(16* Sqrt[2])) + ((Sqrt[ 5 - Sqrt[5]]*(-Sqrt[Sqrt[17] - 3]* Sqrt[4*Sqrt[17] - 2*Sqrt[2*Sqrt[17] + 34]] + Sqrt[2*Sqrt[17] + 34] + Sqrt[17] + 1))/(32*Sqrt[2])) // Abs // FullSimplify // tim During evaluation of In[471]:= 127967.849905,0 (coupla days) Out[471]= 1 Shoulda said AbsArg. 12 more seconds, In[472]:= (((Sqrt[5] + 1)*(-Sqrt[Sqrt[17] - 3]* Sqrt[4*Sqrt[17] - 2*Sqrt[2*Sqrt[17] + 34]] + Sqrt[2*Sqrt[17] + 34] + Sqrt[17] + 1)/ 64) - ((Sqrt[5 - Sqrt[5]]* Sqrt[Sqrt[Sqrt[17] - 3]* Sqrt[2*Sqrt[2*Sqrt[17] + 34] + 4*Sqrt[17]] - Sqrt[2*Sqrt[17] + 34] + Sqrt[17] + 17])/16))* I + (((Sqrt[5] + 1)* Sqrt[Sqrt[Sqrt[17] - 3]* Sqrt[2*Sqrt[2*Sqrt[17] + 34] + 4*Sqrt[17]] - Sqrt[2*Sqrt[17] + 34] + Sqrt[17] + 17])/(16* Sqrt[2])) + ((Sqrt[ 5 - Sqrt[5]]*(-Sqrt[Sqrt[17] - 3]* Sqrt[4*Sqrt[17] - 2*Sqrt[2*Sqrt[17] + 34]] + Sqrt[2*Sqrt[17] + 34] + Sqrt[17] + 1))/(32*Sqrt[2])) // Arg // FullSimplify // tim During evaluation of In[472]:= 12.379624,2 Out[472]= π/170 Extra cores and RAM. Nice hand- and lapwarmer. It's cold in California these days. —rwg (Kids: How does it get the Arg ten thousand times faster than the Abs?) (Support: Note this (from Macsyma) is simpler than the cis π/170 from Developer`TrigToRadicals. Hey, have you considered (trivially) providing CiS?)