9 Jan
2009
9 Jan
'09
11:54 p.m.
Let A(x) = Sum_{n>=0} a(n)*x^n/n! = 1 + 3*x + 31*x^2/2! + 45296*x^3/3! + 4061871*x^4/4! + ... be the exponential generating function for the sequence A144416.
I'm not sure that it is helpful, but the ordinary (not exponential) generating function for the A144416 can be written in the form B(y) = int(exp(y*(x+x^2/2+x^3/6)-x),x=0..infinity) = 1+3*y+31*y^2+842*y^3+45296*y^4+4061871*y^5+... Alec