What is generated by the union of projective and conformal (Moebius) groups? Since these two intersect in similarities, the super-group in n-space has dimension at least (n^2-1) + (n+2)(n+1)/2 - (n+1)n/2 - 1 = n^2 + n - 1 ; just how big is it? How should such transformations be represented for computational purposes? Why don't I know the answers to these apparently obvious questions? [Uh, maybe don't answer that one right now ...] Physicists have previously devoted some thought to this matter: in particular, a promising paper by Wolfgang Bertram (2001) at http://www.emis.de/journals/AG/2-4/2_329.pdf launches into discussing "Jordan functors", which will however surely cost this innocent much gruesome effort to decode. [Pascual Jordan certainly seems put himself about, despite which I don't recall ever having encountered him before this week.] Fred Lunnon