Your values agree well with using 49/100`99 instead of .49 . Aside: In[168]:= 2.^-10^9 Out[168]= 2.167797967617*10^-301029996 If we multiply your table by 2^10^N, 3.785469816580231 2.203100387484833 1.02992329497252 0.4336950427046037 0.1713318934465506 0.06495224068002137 0.02393394372191234 0.008638570596050886 0.003069201032101502 --rwg On 2016-03-05 17:44, Warren D Smith wrote:
Because (in Wolfram notation) Beta[ 1/2, N/2-Sqrt[N*0.49*Log[Log[N]]], N/2+Sqrt[N*0.49*Log[Log[N]]] ] goes to 0 when N-->infinity. Here is a table for N=10^k k | Beta value 1 | 0.00369675 2 | 1.73794*10^-30 3 | 9.6119*10^-302 4 | 2.1738412136*10^-3011 5 | 1.715030375*10^-30104 6 | 6.5603975*10^-301032 7 | 2.6446880*10^-3010302 8 | 2.344465*10^-30103002 9 | 6.6534*10^-301029999
--Actually, I'm skeptical this table output by Wolfram software, is numerically accurate. But the beta value really does go to 0, which is what matters for my argument.