\r hypergeom.inc.gp default(echo,1); default(realprecision,55); default(format,"g.25"); N=1130; \\k=1/sqrt(2) \\ k_1 k=3-2*sqrt(2) \\ k_4 kp=sqrt(1-k^2) K=Pi/2*hypergeom([1/2,1/2],[1],k^2,N) Kp=Pi/2*hypergeom([1/2,1/2],[1],kp^2,N) rat=Kp/K q=exp(-Pi*rat) \\ eta-minus: em=prod(j=1,N+1,1-q^j) t1=em^6 t2=4/Pi^3*k^(1/2)*kp^2*K^3 *q^(-1/4) t1-t2 \\ == zero \\ t1=em^24 t2=256/Pi^12*k^(2)*kp^8*K^12 *q^(-1) t1-t2 \\ == zero \\ for k_4 only: t1=em*q^(1/24) t2=(gamma(1/4)/(2*Pi^(3/4))) t1-t2 \\ == zero \\ http://mathworld.wolfram.com/EllipticIntegralSingularValue.html K-((sqrt(2)+1)*gamma(1/4)^2)/(2^(7/2)*sqrt(Pi)) t1=em*q^(1/24) t2=(256/Pi^12*k^(2)*kp^8*K^12)^(1/24) t2=(256/Pi^12*k^(2)*kp^8*( ((sqrt(2)+1)*gamma(1/4)^2)/(2^(7/2)*sqrt(Pi)) )^12)^(1/24) t2=gamma(1/4)*(256/Pi^12*k^(2)*kp^8*( ((sqrt(2)+1))/(2^(7/2)*sqrt(Pi)) )^12)^(1/24) t2=gamma(1/4)/Pi^(3/4)*(256*k^(2)*kp^8*( ((sqrt(2)+1))/(2^(7/2)) )^12)^(1/24) t2=gamma(1/4)/Pi^(3/4)* 256^(1/24) *(k^(2)*kp^8* ( ((sqrt(2)+1))/(2^(7/2)) )^12 )^(1/24) t2=gamma(1/4)/Pi^(3/4)* 2^(1/3) *(k^(2)*kp^8* ( ((sqrt(2)+1))/(2^(7/2)) )^12 )^(1/24) t2=gamma(1/4)/Pi^(3/4)* 2^(1/3)*(1/(2^(7/2)))^(1/2) *(k^(2)*kp^8* ( ((sqrt(2)+1)) )^12 )^(1/24) t2=gamma(1/4)/Pi^(3/4)* 2^(1/3)*(1/(2^(7/4))) *(k^(2)*kp^8* ( ((sqrt(2)+1)) )^12 )^(1/24) t2=gamma(1/4)/Pi^(3/4)* 2^(1/3)*(2^(-7/4)) *(k^(2)*kp^8* ( ((sqrt(2)+1)) )^12 )^(1/24) t2=gamma(1/4)/Pi^(3/4)* 2^(-17/12) *(k^(2)*kp^8* ( ((sqrt(2)+1)) )^12 )^(1/24) t2=gamma(1/4)/Pi^(3/4)* 2^(-1-5/12) *(k^(2)*kp^8* ( ((sqrt(2)+1)) )^12 )^(1/24) t2=gamma(1/4)/Pi^(3/4)* 2^(-1)* 2^(-5/12) *(k^(2)*kp^8* ( ((sqrt(2)+1)) )^12 )^(1/24) t1-t2 \\ == zero t3= 2^(-5/12) *(k^(2)*kp^8* ( ((sqrt(2)+1)) )^12 )^(1/24) t3= 2^(-5/12) *(k^(2)*kp^8)^(1/24) * (sqrt(2)+1)^(1/2) t3= 2^(-5/12) *k^(1/12)*kp^(1/3) * (sqrt(2)+1)^(1/2) quit; /* +++++++++++++++++++++++ */ \\ eta-plus: ep=prod(j=1,N+1,1+q^j) t1=ep^6 t2=1/2 * k^(1/2) * kp^(-1) *q^(-1/4) t1-t2 \\ == zero \\ t1=ep^24 t2=1/16 * k^(2) * kp^(-4) *q^(-1) t1-t2 \\ == zero \\ prelim in Whittaker/Watson p.488: t1=(k/kp)^(1/2) t2=2*q^(1/4)* ( prod(n=1,N+1,1+q^(2*n)) / prod(n=1,N+1, 1-q^(2*n-1)) )^2 t1-t2 \\ == zero t1=2/Pi * K * k^(1/2) t2=2*q^(1/4)* ( prod(n=1,N, 1-q^(2*n)) / prod(n=1,N, 1-q^(2*n-1)))^2 t1-t2 \\ == zero quit; /* +++++++++++++++++++++++ */