This is probably ho-hum, but while trying to simplify a Chowla-surdberg, I found that 0 = a + 80 x + 20 x^3 + x^5 has solutions {((-a - Sqrt[4096 + a^2])^(1/5) E^((2 I \[Pi])/5))/2^( 1/5) + ((-a + Sqrt[4096 + a^2])^(1/5) E^((2 I \[Pi])/5))/2^( 1/5), ((-a + Sqrt[4096 + a^2])^(1/5) E^(-((2 I \[Pi])/5)))/2^( 1/5) + ((-a - Sqrt[4096 + a^2])^(1/5) E^(-((4 I \[Pi])/5)))/2^( 1/5), ((-a - Sqrt[4096 + a^2])^(1/5) E^(-((2 I \[Pi])/5)))/2^( 1/5) + ((-a + Sqrt[4096 + a^2])^(1/5) E^(-((4 I \[Pi])/5)))/2^( 1/5), (-a + Sqrt[4096 + a^2])^(1/5)/2^( 1/5) + ((-a - Sqrt[4096 + a^2])^(1/5) E^((4 I \[Pi])/5))/2^( 1/5), (-a - Sqrt[4096 + a^2])^(1/5)/2^( 1/5) + ((-a + Sqrt[4096 + a^2])^(1/5) E^((4 I \[Pi])/5))/2^(1/5)} Is it from a two-parameter family? C.f. https://en.wikipedia.org/wiki/Quintic_function#Other_solvable_quintics --rwg