19 Mar
2016
19 Mar
'16
4:07 a.m.
Mathematica won't intersect a line with a plane if any coordinate is non-numeric. So I tricked it into confessing the general case by replacing the twelve symbolic coordinates with Zeta 3, ... , Zeta 25, and then back-substituting. Safe, as long as nobody knows how to simplify the Zetaberg. A burlesque of Bell's inequality? --rwg ppPlane[InfiniteLine[{a_, b_, c_}, {d_, e_, f_}], Hyperplane[{v1_, v2_, v3_}, {p1_, p2_, p3_}]] := Point[{ (a (e v2 + f v3) + d (p1 v1 - b v2 + p2 v2 - c v3 + p3 v3))/(d v1 + e v2 + f v3), (b (d v1 + f v3) + e (-a v1 + p1 v1 + p2 v2 - c v3 + p3 v3))/(d v1 + e v2 + f v3), (c (d v1 + e v2) + f (-a v1 + p1 v1 - b v2 + p2 v2 + p3 v3))/(d v1 + e v2 + f v3)}]