Let a[n] = 2^(n/2+1) sin(n t)/sqrt(7),
where t = atan(sqrt(7)).
Then sin(t) = sqrt(7)/(2 sqrt(2)), and
cos(t) = 1/(2 sqrt(2)).
To start with, a[0] = 0, a[1] = 1.
One can verify the identity
sin(n x) = 2 cos(x) sin((n-1) x) - sin((n-2) x).
Then we see that
a[n] = 2 sqrt(2) cos(t) a[n-1] - 2 a[n-2]
= a[n-1] - 2 a[n-2],
and so a[n] is integral for all n.
"R. William Gosper" <rwg@spnet.com> wrote:
For how many n in {0,1,...,999999} is
n/2 + 1
2 sin(atan(sqrt(7)) n)
-----------------------------
sqrt(7)
an integer? An odd integer?
--rwg
_______________________________________________
math-fun mailing list
math-fun@mailman.xmission.com
http://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun