25 Feb
2013
25 Feb
'13
12:22 a.m.
These bilateral products invariant in the unit disk may be common: Product[1 + (-1/2 + (I*Sqrt[7])/2)*z^2^n + z^(3*2^n) + (-1/2 - (I*Sqrt[7])/2)*z^2^(1 + n), {n, -oo,oo}] == I/Sqrt[7] [...]
Multiplying the identities gives the curious, bilateral product Out[331]=Product[1 - x^2^k + x^2^(1 + k), {k, -Infinity, Infinity}] == 1/3 when |x|<1.
--rwg