25 Nov
2017
25 Nov
'17
7:52 a.m.
https://math.stackexchange.com/questions/2498295/counting-semistandard-young... funny fail in Mathematica 11 for the simple expression like (2^1 4^2 6^3 8^4 10^3 12^2 14^1) / (1^7 3^5 5^3 7^1) when presented like this: \frac{\prod _i^n \prod _j^{-i+n+1} (-i+j+n)}{\prod _k^n (2 k-1)^{-k+n+1}} it produces the quite unsavory \frac{2^{\frac{1}{24} \left(-12 n^2-12 n+1\right)} \pi ^{\frac{n}{2}+\frac{1}{4}} \Gamma \left(n+\frac{1}{2}\right)^{-n-\frac{1}{2}} e^{\zeta ^{(1,0)}\left(-1,n+\frac{1}{2}\right)+\frac{1}{24}} \prod _i^n \prod _j^{-i+n+1} (-i+j+n)}{\sqrt{A}} where A is the Glaisher constant (~ 1.282427..) having read the above link, I had naively expected just 2^(n(n-1)/2) . Bummer! Wouter.