Also, if you multiply the rational terms in Geralds' resultant
sequence by 3, you get:
Sum_{k=0..n}Sum_{j=0..n-k}(j+1)^k*Sum_{i=0..j}(-1)^(n-k+j-i)*C(j,i)*(j-i)^(n-k).
which is now in terms of the sum that Benoit addresses in
A098830.
On Sun, 05 Dec 2004 14:58:51 -0500 Gerald McGarvey <
Gerald.McGarvey@comcast.net>
writes:
> Something to note, the terms can be rewritten as
follows:
>
> 2/1+(4*Pi)/(3^2*Sqrt[3])
>
2/1+(16*Pi)/(3^3*Sqrt[3])
> 14/3+(104*Pi)/(3^4*Sqrt[3])
>
14/1+(936*Pi)/(3^5*Sqrt[3])
> 158/3+(10584*Pi)/(3^6*Sqrt[3])
>
238/1+(143496*Pi)/(3^7*Sqrt[3])
>
3758/3+(2265624*Pi)/(3^8*Sqrt[3])
>
7518/1+(40791816*Pi)/(3^9*Sqrt[3])
>
151934/3+(824378904*Pi)/(3^10*Sqrt[3])
>
378254/1+(18471328776*Pi)/(3^11*Sqrt[3])
>
9304142/3+(454350385944*Pi)/(3^12*Sqrt[3])
>
27689662/1+(12169555717896*Pi)/(3^13*Sqrt[3])
>
802115870/3+(352528455936024*Pi)/(3^14*Sqrt[3])
>
2776117230/1+(10980885962741256*Pi)/(3^15*Sqrt[3])
>
92521462766/3+(365967121556087064*Pi)/(3^16*Sqrt[3])
>
> which
contains the following sequence:
>
4,16,104,936,10584,143496,2265624,40791816,824378904,18471328776,454350385944,12169555717896,352528455936024,10980885962741256,365967121556087064
>
>
>
> Gerald
>
> At 10:41 AM
12/5/2004, wouter meeussen wrote:
> >the Sum(k=1..Inf;
k^n/CatalanNumber[k]) can be written in closed
> form (W.
>
>Gosper, 2000) as
> >
>
>Sum[Hypergeometric2F1[m+1,m+2,m+1/2,1/4]StirlingS2[n,m]/(2m-1)!!/2^m(m+1)!m!,{m,1,n}]
>
>
> >and this simplifies to (for n= 0..14)
> >
>
>2+(4*Pi)/(9*Sqrt[3])
> >2+(16*Pi)/(27*Sqrt[3])
>
>(2*(567+52*Sqrt[3]*Pi))/243
> >14+(104*Pi)/(27*Sqrt[3])
>
>158/3+(392*Pi)/(27*Sqrt[3])
> >238+(15944*Pi)/(243*Sqrt[3])
>
>3758/3+(83912*Pi)/(243*Sqrt[3])
>
>7518+(1510808*Pi)/(729*Sqrt[3])
>
>151934/3+(30532552*Pi)/(2187*Sqrt[3])
>
>378254+(228041096*Pi)/(2187*Sqrt[3])
>
>9304142/3+(5609264024*Pi)/(6561*Sqrt[3])
>
>27689662+(150241428616*Pi)/(19683*Sqrt[3])
>
>802115870/3+(483578128856*Pi)/(6561*Sqrt[3])
>
>2776117230+(15062943707464*Pi)/(19683*Sqrt[3])
>
>92521462766/3+(167337504140872*Pi)/(19683*Sqrt[3])
> >
>
>Now, these expression *seem* to huddle uncomfortably close to
>
integers:
> >2,806133
> >3,074844
> >6,995495
>
>20,986486
> >79,000346
> 009124
>
>1879,002190
> >11276,988463
> >75966,991041
>
>567381,021008
> >4652071,037121
> >41534492,955918
>
>401057934,821915
> >4164175845,053300
>
>46260731383,985200
> >
> >but, the loss of accuracy
towards the end troubles me.
> >Can anyone suggest a mathematical basis
for this small 'numirical'
> ?
> >
> >
>
>W.
>
>
>