Given a finite continued fraction, you can start at the last term and build up the cf by | b d c ab + dc | - -> a + --- = ------- | c b b where 'b/c' is the current fraction, 'a' is the current term, and 'd' is usually 1. This operation is nicely represented with a 2x2 matrix: | [ a d ] [ b ] = [ ab + dc ] | [ 1 0 ] [ c ] [ b ] I'm looking at a situation where I have multiple fractions: | b0 b1 b2 | --, --, -- | c0 c1 c2 and an update rule that takes these to | d00 c0 d01 c1 d02 c2 | a0 + ------ + ------ + ------, | b0 b1 b2 | | d10 c0 d11 c1 d12 c2 | a1 + ------ + ------ + ------, | b0 b1 b2 | | d20 c0 d21 c1 d22 c2 | a2 + ------ + ------ + ------, | b0 b1 b2 Is there a way to do this case with matrices? -- Mike Stay - metaweta@gmail.com http://math.ucr.edu/~mike http://reperiendi.wordpress.com