Why Mathematica drives me up the wall: All I wanted was for it to square the expression for f[u,v] here. Finally (after the following) I tried Expand first, then Simplify, and at last it actually squared the thing. Sheesh. --Dan ****************************************************************** In[1]:= f[u_,v_] := Sqrt[5+4Cos[u]] + 2.5*Sin[(u-v)/2] + Sqrt[11-6Cos[v]-2Sin[v]] In[2]:= g[u_,v_] := f[u,v]^2 In[3]:= g[u,v] u - v Out[3]= Power[Sqrt[5 + 4 Cos[u]] + 2.5 Sin[-----] + 2
Sqrt[11 - 6 Cos[v] - 2 Sin[v]], 2]
In[4]:= FullSimplify[g[u,v]] u - v Out[4]= Power[Sqrt[5 + 4 Cos[u]] + 2.5 Sin[-----] + 2
Sqrt[11 - 6 Cos[v] - 2 Sin[v]], 2]
In[5]:= Clear[g] In[6]:= g[u_,v_] := f[u,v]*f[u,v] In[7]:= g[u,v] u - v Out[7]= Power[Sqrt[5 + 4 Cos[u]] + 2.5 Sin[-----] + 2
Sqrt[11 - 6 Cos[v] - 2 Sin[v]], 2]
In[8]:= Simplify[%] u - v Out[8]= Power[Sqrt[5 + 4 Cos[u]] + 2.5 Sin[-----] + 2
Sqrt[11 - 6 Cos[v] - 2 Sin[v]], 2]
In[9]:= In[9]:= (Sqrt[5+4Cos[u]] + 2.5*Sin[(u-v)/2] + Sqrt[11-6Cos[v]-2Sin[v]])*(Sqrt[5+4Cos[u]] + 2.5*Sin[(u-v)/2] + Sqrt[11-6Cos[v]-2Sin[v]]) u - v Out[9]= Power[Sqrt[5 + 4 Cos[u]] + 2.5 Sin[-----] + 2
Sqrt[11 - 6 Cos[v] - 2 Sin[v]], 2]
In[10]:= Simplify[%] u - v Out[10]= (Sqrt[5 + 4 Cos[u]] + 2.5 Sin[-----] + 2 2
Sqrt[11 - 6 Cos[v] - 2 Sin[v]])
****************************************************************** Sometimes the brain has a mind of its own.