I think the Nth term is very roughly N^c, for some c>1.

Rich


-----Original Message-----
From: Schroeppel, Richard
Sent: Fri 12/17/2004 5:04 PM
To: njas@research.att.com
Cc: Schroeppel, Richard; rcs@cs.arizona.edu
Subject: new sequence


I'm not sure if you want to include this sort of sequence, but
it seemed like an interesting idea.

171 181 272 282 1531 1631 2532 2632 3151 3161 3252 3262 11711 11811
12712 12812 14171 14181 14271 14272 15171 15172 16171 17141 17161
17162 17261 17331 17910 18141 18161 18331 18910 21721 21821 22722
22822 24171 24172 24272 24282 25271 25272 26272 27162 27261 27262
27242 27332 27920 28262 28332 28920 31731 31831 32732 32832 33171
33181 33272 33282 91071 91081 91710 91810 92072 92082 92720 92820

Theorems from propositional calculus, translated into decimal digits.
Blocks of 1s & 2s are variables: A = 1, B = 2, C = 11, D = 12, E = 21, ...
Not = 3; And = 4; Xor = 5; Or = 6; Implies = 7; Equiv = 8;
Left Parenthesis = 9; Right Parenthesis = 0.
Operator binding strength is in numerical order, Not > And > ... > Equiv.
The non-associative "Implies" is evaluated from Left to Right; A->B->C is
interpreted (A->B)->C.  Redundant parentheses are permitted.
Example: 17162 is the theorem A->AvB.

Rich   rcs@cs.arizona.edu   rschroe@sandia.gov