all have equal Absolute values for z=(-1)^(1/15), but they are devoid of any (known) symmetry. the first set of ten: z+z^5+z^6+z^10+z^12+z^14+z^17+z^22, z+z^4+z^9+z^10+z^13+z^15+z^17+z^22, z+z^3+z^5+z^9+z^10+z^14+z^15+z^17+z^22, z+z^4+z^6+z^10+z^12+z^13+z^17+z^18+z^22, z+z^2+z^6+z^7+z^9+z^11+z^18+z^23, z+z^2+z^4+z^6+z^10+z^11+z^13+z^18+z^23, z+z^2+z^7+z^9+z^10+z^12+z^14+z^19+z^23, z+z^2+z^3+z^6+z^8+z^10+z^14+z^19+z^24, z+z^3+z^6+z^10+z^11+z^12+z^14+z^19+z^24, z+z^5+z^6+z^7+z^10+z^13+z^15+z^19+z^24 the second set: z+z^3+z^6+z^8+z^9+z^13+z^14+z^17, z+z^2+z^4+z^6+z^7+z^10+z^13+z^18, z+z^2+z^4+z^6+z^7+z^11+z^12+z^15+z^18, z+z^3+z^5+z^6+z^8+z^9+z^14+z^19, z+z^2+z^5+z^7+z^8+z^10+z^13+z^15+z^19, z+z^3+z^6+z^7+z^9+z^12+z^14+z^15+z^19, z+z^2+z^4+z^6+z^7+z^8+z^12+z^15+z^20, z+z^4+z^6+z^7+z^8+z^11+z^12+z^17+z^20, z+z^5+z^6+z^8+z^9+z^11+z^12+z^17+z^22, z+z^5+z^6+z^7+z^9+z^10+z^12+z^17+z^23 sets of bicolored glass beads were once fashionable as gifts (?) Wouter Meeussen wouter.meeussen@pandora.be