I asked If there is a ScoobyJackson, why isn't it in BHS? I still don't know why, but none other than coauthor Mizan Rahman, Dr. q himself, kindly demolishes the "if": 2 n a q 1 2 k 2 k inf (a, b, c, d, -----, --; q) q (1 - a q ) ==== b c d n k \ q > --------------------------------------------- / a q a q a q b c d n + 1 ==== (q, ---, ---, ---, --------, a q ; q) k = 0 b c d n - 1 k a q --------------------------------------------------- = 1 - a 2 n a q a q a q a n a q (---, ---, ---; q) (a q; q) ((1 - -----) (1 - q ) (1 - -----) b c b d c d n - 1 n b c d b c d a a a n a q a q a q a + (1 - ---) (1 - ---) (1 - ---) q )/(---, ---, ---, -----; q) b c b d c d b c d b c d n Notice the argument of q^2 vs Jackson's q. However, this is not sufficient to explain the failure of the linear combination trick. --rwg REHABILITATE THE BILATERIA