On Mon, Aug 19, 2019 at 1:17 PM françois mendzina essomba2 <m_essob@yahoo.fr> wrote:
Dear Pr Bill, Finally, the identity seems true for all
Pi/4 == Sum[(Cosh[(1/2 + n)*y]*(2*n)!*((-Sqrt[2] + 2*Cosh[y])*Sech[2*y])^(1/2 + n))/ (2^(4*n)*((1 + 2*n)*n!^2)), {n, 0,∞}]
Thank you... Le dimanche 18 août 2019 à 00:54:04 UTC+1, Bill Gosper < billgosper@gmail.com> a écrit :
Except <odd> I π (!). —Bill
On Sat, Aug 17, 2019 at 2:21 PM françois mendzina essomba2 < m_essob@yahoo.fr> wrote:
Hello,
This identity seems true for some
but not all??
values of x.
But we can delete x.
Pi/4=sum(((2*n)!*(cosh(5/(x/sqrt(x^17+1)+1))/(cosh(5/(x/sqrt(x^17+1)+1))^2-1/2)-1/(sqrt(2)*(cosh(5/(x/sqrt(x^17+1)+1))^2-1/2)))^((2*n+1)/2)*cosh(((5/2)*(2*n+1))/(x/sqrt(x^17+1)+1)))/((2*n+1)*2^(4*n)*n!^2),n=0..inf);
best ragard
Dr. E: You can change variables and get the less exotic assertion
Pi/4 == Sum[(Cos[(1/2 + n)*y]*(2*n)!*((-Sqrt[2] + 2*Cos[y])*Sec[2*y])^(1/2 + n))/ (2^(4*n)*((1 + 2*n)*n!^2)), {n, 0,∞}]
which I can neither prove nor refute. —Bill Gosper