10^20+1=73*137*1676321*5964848081 10^21+1=7^2*11*13*127*2689*459691*909091 Most of these patterns are related to the fact that 10^n+1 is a divisor of (10^(2n)-1). On Mon, Sep 25, 2017 at 3:36 PM, Dan Asimov <dasimov@earthlink.net> wrote:
Decided to list these just for the heck of it.
Some amusing almost-patterns for 10^0 + 1 through 10^19 + 1:
1 = 1
11 = 11
101 = 101
1001 = 7 * 11 * 13
10001 = 73 * 137
100001 = 11 * 9091
1000001 = 101 * 9901
10000001 = 11 * 909091
100000001 = 17 * 5882353
1000000001 = 7 * 11 * 13 * 19 * 52579
10000000001 = 101 * 3541 * 27961
100000000001 = 11 * 11 * 23 * 4093 * 8779
1000000000001 = 73 * 137 * 99990001
10000000000001 = 11 * 859 * 1058313049
100000000000001 = 29 * 101 * 281 * 121499449
1000000000000001 = 7 * 11 * 13 * 211 * 241 * 2161 * 9091
10000000000000001 = 353 * 449 * 641 * 1409 * 69857
100000000000000001 = 11 * 103 * 4013 * 21993833369
1000000000000000001 = 101*9901*999999000001
10000000000000000001 = 11*909090909090909091
10^20 + 1 is too large for my software.
—Dan
_______________________________________________ math-fun mailing list math-fun@mailman.xmission.com https://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun
-- -- http://cube20.org/ -- http://golly.sf.net/ --