Pairwise combining the terms of A&S 6.5.31 (upper Gamma CF), then adding last week's lower gamma CF: In[185]:= Equal[Gamma[ z], ((y^z*((1/(cfk[n*(z - n), -z + y + 2*n + 1, List[n, Infinity]] - z + y + 1)) + (1/(z + cfk[n*y, z - y + n, List[n, Infinity]] - y))))/(E^y))] z 1 Gamma[z] == (y (------------------------------------------- + -y + z + cfk[n y, n - y + z, {n, Infinity}] 1 y -----------------------------------------------------------)) / E 1 + y - z + cfk[n (-n + z), 1 + 2 n + y - z, {n, Infinity}] where cfk:=ContinuedFractionK and y>0 can be chosen to optimize convergence. Specializing, In[186]:= % /. z -> 1/2 /. y -> 1 Out[186]= 1 Sqrt[Pi] == (-------------------------------------- + 1 1 -(-) + cfk[n, -(-) + n, {n, Infinity}] 2 2 1 ------------------------------------------) / E 3 1 3 - + cfk[(- - n) n, - + 2 n, {n, Infinity}] 2 2 2 In[192]:= N[List @@ %186 /. cfk[num_, den_, _] :> ContinuedFractionK[num, den, {n, 9}]] Out[192]= {1.77245, 1.77244} This is the first non-asymptotic sum or CF I've seen for sqrt(pi). But the sum behind the lowergamma cf has been there all along, so I must not have been paying attention. --rwg