On Thu, 10 Jul 2003, John McCarthy wrote:
Does the following work?
Choose the bits of the 27 by 27 array to give the desired picture - whatever it may be. Jiggle the bits systematically so as not to change the picture too much and check the modified numbers for primality. Presumably log n changes will ordinarily yield a prime.
I think so. As more evidence consider the following prime (actually probabilistic prime) found by Renaud Lifchitz: p=3101805506546616280631635616871932001139678275905519848096343683700 1064413299689909982581233599912690445747213000469488219983668395902399 2112714513427534901236590365687502134385507575859451115751110533156859 6161851812364061151621609005081840974114067184997406430437877618405800 0031904561144039147499937678209426297296078944799076442958087621851150 6376879633780612363524021157887: Converting it to binary, replacing 1's by *'s and 0's by blanks and arranging in a 19x66 array we get the self-proclaiming prime pattern: ****************************************************************** * * * * * * * ** * * ** * * * * ***** ** *** ** *** *** * * ** **** * * ** ** *** ** *** ** ** ** * ** ** ** * * ** ** ** ** ** ** * ** ** ** * * ******* ** ** ** ** ** * ** ******** * * ** ** ** ** ** ** ** * ** ** * * ** *** *** ** ** ** ** * ** ** ** * * **** ** ** *** ** ****** ** * ** ***** * * ** * * ** * * * * * ******************************************************************