On 5/17/08, N. J. A. Sloane <njas@research.att.com> wrote:
WFL said:
Our third attempt at multiplication x(*)y looks like
____y__0___1___2___3___4____5____6____7____8____9 __x______________________________________________ __0____0___0___0___0___0____0____0____0____0____0 __1____0___3___5___8__11___13___16___18___21___24 __2____0___5___8__13__18___21___26___29___34___39 __3____0___8__13__21__29___34___42___47___55___63 __4____0__11__18__29__40___47___58___65___76___87 __5____0__13__21__34__47___55___68___76___89__102 __6____0__16__26__42__58___68___84___94__110__126 __7____0__18__29__47__65___76___94__105__123__141 __8____0__21__34__55__76___89__110__123__144__165 __9____0__24__39__63__87__102__126__141__165__189
Me: Isn't that Knuth's product? Remember that arrays are stored in the OEIS by antidiabgonals. Neil ...
Due to a combination of program malfunction and misreading Wikipedia, I wasn't sure about this until I saw Knuth's paper --- but yes, it is Knuth's product. I'll take a look at what OEIS has to say ... WFL