*Hello, Four constants (e, pi, gamma and phi) in a continuous cubic root. Formula 33 a:=2/((3*sqrt(5))*((1/9)*((exp(-gamma)*Pi)/2+sqrt(27*Pi^2*exp(-2*gamma)-4)/(2*3^(3/2)))^(-1/3)-((exp(-gamma)*Pi)/2+sqrt(27*Pi^2*exp(-2*gamma)-4)/(2*3^(3/2))))) ; b:=(3/sqrt(5))*(((3*sqrt(5)*((exp(-gamma)*Pi)/2+sqrt(27*Pi^2*exp(-2*gamma)-4)/(2*3^(3/2))))-((exp(-gamma)*Pi)/2+sqrt(27*Pi^2*exp(-2*gamma)-4)/(2*3^(3/2)))^(1/3))/(1-9*((exp(-gamma)*Pi)/2+sqrt(27*Pi^2*exp(-2*gamma)-4)/(2*3^(3/2)))^(4/3))); r:=1/((((((((((((exp(-gamma)*Pi+1)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3) +exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3) +exp(-gamma)*Pi)^(1/3) +exp(-gamma)*Pi)^(1/3)+ …) ; (phi)^(-1)=(1/a)*(b+r); An approximate value will be: (phi)^(-1)=(1/a)*(b+1/(((((((((((exp(-gamma)*Pi+1)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3) +exp(-gamma)*Pi)^(1/3)+exp(-gamma)*Pi)^(1/3) +exp(-gamma)*Pi)^(1/3) +exp(-gamma)*Pi)^(1/3)); Formula 34 continuous fraction phi:=sqrt(4*exp(-5*Pi)+4106118241)/(sqrt(5)*(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)+64079)+64079)+64079)+64079)+64079)+64079)+64079)+64079)+64079)+64079)+64079)-sqrt(4*exp(-5*Pi)+4106118241)/(2*sqrt(5))+64079/2)+…) ; An approximate value will be: phi:=sqrt(4*exp(-5*Pi)+4106118241)/(sqrt(5)*(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)/(exp(-5*Pi)+64079)+64079)+64079)+64079)+64079)+64079)+64079)+64079)+64079)+64079)+64079)-sqrt(4*exp(-5*Pi)+4106118241)/(2*sqrt(5))+64079/2)) ; Best regards...*