Of Newtons and Mandelbrots
How about a newton mandelbrot mash-up? While this newton algorithm fractal has an inverse bailout there are minibrots present. The Fractint formula parser, the Swiss army knife of fractal programs. Note that fmod (for inside set coloring) has a lower than default proximity value. Posted at http://maxitersfractalfollies.blogspot.com. fract435.gif { ; mandelbrot newton mashup ; blank ; calctime 0:13:39.87 ; created Sep 24, 2010 ; Fractint Version 2004 Patchlevel 9 reset=2004 type=formula formulafile=_f.frm formulaname=F'M-SetInNewtonB function=cosh center-mag=-1.05687188006308700/+0.89796713004833140/191.5271 params=5/0/1e-007/0 float=y maxiter=3600 inside=fmod proximity=0.0001 outside=tdis colors=00fv0bt0ar0_q0Zo0Xm0Wl0Uj0Ti0Rg0Qe0Pd0Nb0M`0K_0JY0HX0GV0ET0DS0BQ0\ AO08P08Q08R08S18U18V18W18X28Y28_28`28a38b38d38e38f48g48h48j48k58l58m58o5\ 8p68q68r68s68u78v78w78x78z88z98zA8zB8zC8zD8zE8yF8yG7yH7yI7yJ7yK7xL7xM7xN\ 7xO6xP6xQ6wR6wS6wT6wU6wV6wW5vX5vY5vZ5v_5v`5va5ub5uc4ud4ue4uf4ug4th4ti4tj\ 4tk3tl3tm3sn3so3sp3sq3sr3rs2qs2os3ns3mr4lr4kr5jr5hr6gr6fr6er7dr7cq8aq8`q\ 9_q9ZqAYqAXqBVqBUpCTpCSpDRpDQpDOpENpEMpFLpFKoGJoGHoHGoHFoIEoIDoJCoJAnK8q\ L5tN3wP0zR0wQ0sO0pN0lL0hJ0eI0aG0YE0VD0RB0N90K80G60C40H90MF0RL0WR0`X0eb0j\ h0on0tt0zz0xx0vv0st0qr0no0lm0jk0gi0ef0bd0`b0Y`0WY0UW0RU0PS0MP0KN0HL0FJ1C\ G2CL4DP5DU7DZ8EbAEgBElDFpEFuGGzGGxFFvEEtDDrCCpBBnBBlAAj99h88f77d66b66`55\ Z44X33V22T11R00O53SA6XG9aLCfQFkWIp`LufOzfNyfMweLveKtdJsdIqdHpcGncFmbEkbD\ jaChaBgaAe`9d`8b_7a_6__5ZZ4XZ3WY2UY1TX0Rc0Vk0Zr0bz0fy0e } frm:F'M-SetInNewtonB (XAXIS) {; use float=yes, periodicity=no ; set p1 >= 3, 1e-30 < p2 < .01 z=0, c=fn1(pixel), cm1=c-1, cm1x2=cm1*2, twoop1=2/p1, p1xc=c*real(p1): oldz = z z= (p1xc - z*cm1x2 )/( (sqr(z)*3 + cm1 ) * real(p1) ) + z*real(twoop1) |z - oldz| >= p2 ;SOURCE: mandnewt.frm } Roger Alexander
participants (1)
-
Roger Alexander