FOTD 07-06-08 (Count Fracula [6])
FOTD -- June 07, 2008 (Rating 6) Fractal visionaries and enthusiasts: A lot of flashy colors and a lot of filaments do not make a superior fractal. This description fits today's image, which rates only a 6. Today's fractal lies in the Z^(sqrt(2))+C Mandeloid as it appears 13 levels up the logarithmic ladder when no function is used. The most notable feature of the parent fractal is its incredibly long main filament. Today's scene is located deep in the East Valley area of the most prominent minibrot on this long zigzagging filament. There is a minibrot at the center of the image, though it lies far beyond the range of resolution. As it is, the magnitude of over 2*(10^12) is right at the limit, and requires the mathtolerance entry to assure that the parameter file calculates at the correct magnitude. I named the image "Count Fracula", though I can see little in it to connect it with that infamous monster. The calculation time of 5-1/2 minutes is about the fractal average. But it is always a convenient choice to view the finished image on the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> A cloudy morning gave way to a sunny hot afternoon here at Fractal Central on Friday, with a temperature of 86F 30C. The fractal cats, feeling the heat, remained in stretched-out mode. My day was unexpectedly busy, which explains the hasty fractal. Tomorrow will be slower, hopefully resulting in a better FOTD image. That image, however good, will be posted in 24 hours. Until then, take care, and wait for whatever is coming. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Count_Fracula { ; time=0:05:34.44-SF5 on P4-2000 reset=2004 type=formula formulafile=allinone.frm formulaname=MandelbrotBC3 function=ident passes=1 center-mag=-2.587188090720521/-2.220584310407471/\ 2.104486e+012/1 params=1.4142/0/13/0 float=y maxiter=1500 inside=0 periodicity=10 mathtolerance=0.05/1 colors=000LESLERLFQLFPLFOKFNKFMKFLKFKKFJXaLhwM_0Z`\ 5W`AU`ES`JP`ONaSLaXJaaGaeEajCanAbmEblHblKbkNbkQbjT\ biWciZchachdcggcfjcfmcepces`hpYjmVljSogPqdMsaKuZHp\ VFlRDgNBcJ9_GCaHFbHHcIKdIMeJPfJRgKUhKWiLZjL`kL_hKA\ 3KG4KH5JI6JK7JM8JO9IQAISBIUCIWDHYEH_FHaGHcKGfNFjRE\ mUDqXCt`BxcAzf9zj8zm7zp7zsBzuEzvHzuKzsNzqQzoTzmWzj\ ZzgazddzagzZLzXNz_OzaQzcRzfSzhUzjVzlXvoYrqZms`iuaj\ wblxdmxfoxhpxjrxlsynuypvyrxytyyvWom3fe3dd3bd3`c3_c\ 3Yb3Wb3Ua3Ta3R`3P`3N_3M_7SaAXcDbeGggJmiMrkPwlZZOgB\ 0fA5eAAdAEcAJb9Nb9Sa9X`9`_8eZ8iY8nY8rX9nWAkWBhVCdV\ DaUEZUFWTGSTHPSIMSJJPNNNQQLUTIXWG`ZEcaBge9jh7nk4qn\ 2uq0xt8xoFxkMyfTyb_yYfzUmzQnzOnzNnzLozKozIozHozGpz\ EpzDpzBzzAzz8qz7zv6pr8qm9khAmcBmZImUPmZWcdbUjiKpp9\ vwBrrCnmEjhFgcHcZI_UKWPLTKNPFOLAPI5IGDCEL6CT0B`c_b\ XPSQFHK56P97UC8ZF9cJAhMBlPBmOCnOCoNCpNCqMCrMDsLDtL\ DuKDvKDwKDtJGqJIoJLlINMET } frm:MandelbrotBC3 { ; by several Fractint users e=p1, a=imag(p2)+100 p=real(p2)+PI q=2*PI*fn1(p/(2*PI)) r=real(p2)+PI-q Z=C=Pixel: Z=log(Z) IF(imag(Z)>r) Z=Z+flip(2*PI) ENDIF Z=exp(e*(Z+flip(q)))+C |Z|<a } END PARAMETER FILE=========================================
participants (1)
-
Jim Muth