This fractal makes a web of interconnected rings. You can see the pattern I used to add the rings by zooming out. The technique is the same one that usually adds longer arms to a fractal. To perform the technique, you repeatedly zoom in on ever smaller self similar structures. In this fractal, each time you do that it adds one more ring. The equation is: z = 1 / (1 / ((z ^ 3) * sinh(z) + pixel + 1) + 1 / (z ^ 4 + pixel - 1)) Here is a link to an image: http://dl.dropbox.com/u/33642054/image/web_rings_1200_5.jpg The Fractint compatible PAR file for the image is: Web_Rings { ; Exported from Fracton. reset=2004 type=formula formulafile=fracton.frm formulaname=F_20121113_0850 passes=1 float=y center-mag=-2.730493261162895/-4.958068276404781e-\ 14/44444445000/1/0/0 params=1/1/4/4/-1/0/1/0/0/0 maxiter=2000 inside=0 periodicity=6 colors=000mnjjligihcgg`deYadU_cRXaOU`KS_HPYEMXAKW7\ HU4ET0BR3DS6GT9IUDLWGOXJQYNT_QW`TYaX`c_bdbeefhgijh\ lmippkpnipkgphepecpcap`_pYYoVWoTUoQSoNQoKOoIMoFKoC\ In9FnBGnEInGJnJLnLNnOOnRQoTSoWToYVo`XobYoe_phanjak\ lbincfpdcseasfZrgWriUqjRplOpmMooJopGnrEmsBmu8lv5kx\ 7kw9kvBluDltFmsHmrJnqLnpNnnPomRolTpkVpjXqiZqh`rgbr\ fesdcpeamfZjgXfiUcjS`kPXmNUnKRoIOpFKrDHsAEt8Av57w3\ 4x00z33y67x9AvCEuFHtILrLOqOSoRVnUZmXak_ejbhielghof\ lsdjqegofdmgajiZhjWfkTdmQanO_oLYqIWrFTsCRu9Pv6Nw3K\ y0Iz3Ky6Mx9OvCQuFTsIVrLXqOZoSanVclYek`gjcjhflginel\ pdtsiqphnlfkiehfcecbb`aZX_WUZTRYQOWNKVKHUHESEBRA8Q\ 85PA8QEBRHESKHUNKVQOWTRYWUZZX_b`aecbhfckienlfqphts\ iurhvpfwneylcyk`yjYxiVxhTxhQxgNwfKweHwdFvdCvc9vb6u\ a4vb6vc9vdCwdFweHwfKxgNxhQxhTxiVyjYyk`ylczlfzmiwmh\ tlfqlenkcliaif_fcXd`VaZTZWQWTOUQMRNJOLHMIFJFCGCAD9\ 7FB9IEBLHEPMJUSPZYUcb_hhd } frm:F_20121113_0850 { ; Similar to the parallel resistance formula a=real(p1),b=real(p2)-1,d=imag(p1),f=imag(p2), z=0,c1=pixel-p3,c2=pixel-p4: z=1/(1/(a*(z^b)*sinh(z)+c1)+1/(d*(z^f)+c2)), |z|<100 } -- Mike Frazier www.fracton.org
participants (1)
-
Mike Frazier