Knock knock... Who's there? Orange. Orange who? Orange you glad I didn't say "Today's minibrot..." Today's posting is not a minibrot it's a fractal with a metallic weave effect from the Liar family of formulas. Use an outside coloring with a higher than usual proximity value, calculate with low maximum iteration value and you get today's fractal. Go to the old reliable http://maxitersfractalfollies.blogspot.com for the pre-calculated fractal. And now for the local weather report.Calgary had a hailstorm today with some large hailstones but not of the bigger than a golf ball type. No significant damage but with this latest down pour the weather remains unseasonably wet and cold and the farmers are worried. fract310.gif { ; metallic weave ; blank ; calctime 0:01:21.67 ; created Jul 12, 2010 ; Fractint Version 2004 Patchlevel 9 reset=2004 type=formula formulafile=fract001.frm formulaname=F'Liar1 function=ident center-mag=3.41766/-2.62175/0.8266842 params=0.9479354228339488/0.30405590990936 float=y maxiter=15 inside=0 proximity=2 outside=fmod invert=0.791558580278939/-0.0923184911648915/-0.439802240058596 colors=000CGUBET9DS8BR7AQ69P57O36N24M13L02K02K13L25M36N47O69P7AQ8CR9DSAE\ TBGUCHVDIWFKXGLYHMZIO_JP`KRaLSbMTcOVePWfQXgRZhS_iTajUbkVclXemYfnZgo_ip`j\ qakrbmscntepufqvgrwhtxiuyjvzjvziuyhsxgrwfqvdoucntblsakr`jq_hpZgoYfnWdmVc\ lUbkT`jS_iRYhQXgPWfNUdMTcLSbKQaJP`IN_HMZGLYEJXDIWCHVBFUAET9DS8BR7AQ58P47\ O36N24M13L02K02K13L25M36N47O69P7AQ8CR9DSAETBGUCHVDIWFKXGLYHMZIO_JP`KRaLS\ bMTcOVePWfQXgRZhS_iTajUbkVclXemYfnZgo_ip`jqakrbmscntepufqvgrwhtxiuyjvzjv\ ziuyhsxgrwfqvdoucntblsakr`jq_hpZgoYfnWdmVclUbkT`jS_iRYhQXgPWfNUdMTcLSbKQ\ aJP`IN_HMZGLYEJXDIWCHVBFUAET9DS8BR7AQ58P47O36N24M13L02K02K13L25M36N47O69\ P7AQ8CR9DSAETBGUCHVDIWFKXGLYHNZIO_JP`KRaLSbMTcOVePWfQYgRZhS_iTajUbkVclXe\ mYfnZho_ip`jqalrbmscntepufqvgswhtxhtxiuyhtxgrwfqveoucntbmsakr`jq_ipZgoYf\ nXdmWclVbkT`iS_hRZgQXfPWeOUdNTcMSbLQaKP`IO_HMZGLYFJXEIW } frm:F'Liar1 {; Generalization by Jon Horner of Chuck Ebbert formula. ; X: X is as true as Y ; Y: Y is as true as X is false ; Calculate new x and y values simultaneously. ; y(n+1)=abs((1-x(n) )-y(n) ), x(n+1)=1-abs(y(n)-x(n) ) z = pixel: z = 1 - abs(imag(z)-real(z) ) + flip(1 - abs(1-real(z)-imag(z) ) ) fn1(abs(z))<p1 ;SOURCE: fractint.frm } Roger Alexander _________________________________________________________________ Game on: Challenge friends to great games on Messenger http://go.microsoft.com/?linkid=9734387
participants (1)
-
Roger Alexander